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1. INTRODUCTION

1.1. Purpose

Tile objective of the Multi-Path Redundant Avionics Suite (MPRAS) pr,_granl is tile

development of a set of avionics architectural modules which will be applicable to tile

family of launch vehicles required to support tile Advanced Launch System (ALS).

To enable ALS cost/performance requirements to be met, the MPRAS must support

autonomy, maintenance and testability capabilities which exceed those present in con-

ventional launch vehicles. The multi-path redundant or fault tolerance characteristics

of the MPRAS are necessary to meet avionics reliability requirements.

A complex, real-tilne distributed computing system is needed to meet the ALS

avionics system requirements. General Dynamics, Boeing Aerospace and ('..S. Draper

Laboratory have proposed system architectures as candidates for the A LS *It'RAS.

The purpose of this document is to report tile results of independeut perfl_rmance and

reliability characterization and assessment analyses of each proposed candidate archi-

tecture and qualitative assessments of testability, maintaiaability and fault tolerance

mechanisms. These independent analyses were conducted as part of thv MPI{AS Part

2 program and were carried under NASA Langley Research Contract NAS1-17964,

Task Assignment 28.

The characterization and assessment analyses were directed toward identifying

strengths, weaknesses, limitations and development risks for each architecture. At

the outset of this effort, an evaluation plan wa.s developed which called for compar-

ative evaluations of tile architectures against a common baseline set of application

requirements. As the program evolved, each architecture was designed to meet dif-

ferent detailed application requirements as defined by the developer. While there

was considerable similarity between these requirements, there were instances where

tile requirements differed radically. Consequently, comparative evallzations were not

possible in certain areas.

1.2. General System Description

Figure 1.1 is a generic diagram showing the major elements of a digital avionics system

appropriate for the MPRAS application. Tile system is composed of: 1) sensors that

provide measurements of physical parameters which are necessary to implement the

desired control functions, 2) a sensor communications network to deliver sensor data to

the distributed computing resources, 3) distributed computing resources to carry out

the control computations, 4) a computer conmmnications network to provide for data



and control conu_aunicationsbetweencomputing resources,5) operating systemand
application softwarewhich implementthe desiredavionics functions, 6) an actuator

data distribution network which delivers control information to the actuators, 7) tile

actuators that effect the desired control actions, and 8) a power system that provides

tile necessary electrical power to all elements and interfaces to other vehicle or ground
support subsystems.

The major functions implemented by ttle digital avionics system for core and

booster components include:

1. engine or propulsion control,

2. adaptive guidance navigation and flight control,

3. fluids management,

4. integrated health monitoring,

5. power management,

6. data recording,

7. communications and telemetry, and

8. mission control.

1.3. Architecture Configurations and Coarse Module Break-
downs

In order to determine rough complexity characteristics for the MPRAS application,

modules of the candidate architectures were configured to implement a hypothetical

case. This case was derived to be generally within and representative of the MPRAS

requirements as represented by the Boeing Aerospace M PRAS System Requirements

Document and tile General Dynamics MPRAS Point Design Evaluation Report. It

does not, however, represent a specific application. This effort was undertaken to

determine the overall complexity of the application in terms of module counts and to

determine each architecture sensitivity to application complexity.

A hypothetical launch vehicle with three engines in the core stage and five engines

in the boost stage was considered. For each engine the propulsion control used 30

parameter measurements that must be updated at a 100 Hz rate. Of the 30, 15 used

dual redundant sensors and 15 require single sensors. A total of 45, 100Hz, sensors
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were used for propulsion. In addition, 30 parameter measurements, updated at a 1 Hz

rate were used. Similarly, 15 used dual redundant sensors and 15 used single sensors

for a total of 45 additional sensors. Finally, two dual redundant acoustic vibrator

sensors sampled at a 2 KHz rate were used. Actuators required for each engine were

16 updated at a 1 Hz rate and 4 updated at a 50 Hz rate. To support fluids manage-

ment, adaptive guidance, navigation and flight control an additional 540 sensors and

240 actuators were distributed within the core and booster. A block of inertial mea-

surement sensors and a GPS receiver and processor were assigned to provide essential

inputs for the navigation function. A total of 1290 sensors and 400 actuators were

required for this example. This number is well within the estimated 3000 to 6000

sensor/actuator requirements set for MPRAS. Functions such as integrated health

monitoring and data recording were not considered.

Except where noted, modules represent a circuit card. The modules that make

up each architecture were configured to meet the requirements of this case. No claim

is made that the configurations are optimum.

Following General Dynamics guidelines, a triplex system with a remote data in-

terface (RDI) dedicated to each engine is used. Additional, RDI's are used to acquire

sensor data from sensor input modules (SIM) distributed throughout the vehicle. The

SIM was assumed to handle 15 sensor signals with necessary excitation signal condi-

tioning, analog/digital conversion and testing capability. Since this module has not

been completely defined and since it may require more than one circuit card to realize,

module counts for this function are not directly comparable to other module counts.

The processing required to carry out MPRAS functionality is provided by the Iner-

tial Measurement Unit (IMU) and the Vehicle Management processor (VMP). The

proposed General Dynamics self-checking processor/memory module is substantially

more complex than the processor or memory modules used in the other architectures

and may require more than one circuit card for implementation. Consequently, mod-

ule counts shown for the General Dynamics configuration may tend to be less than

that actually required. This configuration does not incorporate the more distributed

sensor data collection scheme currently being considered by General Dynamics under
MPRAS Part III.

The configuration for the Boeing modules following Boeing's guidelines is quadru-

plex and assigns only one processing site in each stage to propulsion control. Pro-

cessors are assigned to perform mission processing (MP) and guidance, navigation,

and control (GNC). Note that the computing requirements for propulsion control, if

they are as high as 5-10 MIPS/engine as some estimates indicate, may require more

processors to control the eight engines. Interface hardware for the 1773a and HSDB

buses are required for the processing sites and I/O processors. Module requirements

for the local signal conditioner unit (LSC) which was not fully defined by Boeing



assumesthat six modules are required to interface to 30 sensors and/or actuators

and that an additional two modules are required for A/D conversion, testing and

transducer bus interfaces.

The AIPS module count is based Oll a quadruplex system and o11 assigning one

fault-tolerant processor (FTP) to each engine. Additional processors are assigned to

perform mission processing (MPJ and guidance navigation and control ((;N(;JThe

module breakdown for this configuration follows the proof-of-concept implementation

of AIPS. Consequently, the number of unique modules and hence the total module

count will tend to be higher than module counts for a repackaged AIPS which takes

advantage of projected microelectronics technology, and higher than module counts

for the other architectures which are based on projected technology. Device interface

units (DIU) provide for the acquisition of sensor data and the distribution of actuator

control data. The DIU module counts assumes 15 inputs or outputs per module

for signal conditioning and sensor interfacing. The intercomputer network (IC) is

triplex redundant and tile fault-tolerant I/O network is assumed to have at least dual

redundancy. Network node hardware provides for circuit switching on the 1C and 1/O

networks. Some I/O links can be used in AIPS to provide for additional reliability of

the networks. However, the constraints of routing these spare links within the vehicle

may render this AIPS feature unusable.

Figures 1.2, 1.3, 1.4, 1.5 show configurations for each architecture. Tables 1.1, 1.3,and 1.2
sumll_arize module counts.

A direct comparison of module counts for each architecture is not appropriate

given the assumptions going into their derivation. However, a number of general ob-

servations can be made from these coarse module counts. First, between 50% and

85% of the modules are directly involved in sensor/effector I/O. Second, if the module

counts are divided by the assumed redundancy the number of modules in each re-

dundant path is nominally 150 modules plus or minus 20%. This will dictate average

module failure rates, which are more than two orders of magnitude lower than the

necessary channel failure. Further, each chanlM will have nominally 50,000 circuit

card electrical contacts. Third, the more distributed sensor data collection character-

istics of the Boeing architecture, which also was assumed for the AIPS architecture,

results in substantially more mechanical enclosures and hence more maintenance ac-

cess points within the vehicle. Since General Dynamics has indicated a desire to use
a more distributed sensor data collection scheme in their current MPRAS Part 1II ac-

tivities, the significant difference between enclosure requirements for the architectures
would be reduced.

A final observation regarding the total number of processors used in these mod-
ules is in order. Since the standard JIAWG modules such as the HSDB interface and

the 1773 interface contain 1750A processors, the total number of processors used in
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Function N m

GN&C 1
Processor

Mission
Processor 2

(2)

Local Signal
t_onditioner 42

(42)

I/O Channels 16
(16)

TOTAL 61

8 2 4 4 4

16 4 8 8 8

t-

'7-.
O

®

O
tt_

24 6 70 20 12 332 128

Note: Shaded entlies represent sensor/actuator I/O.

Table 1.2. Module Count for Boeing Example
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the General Dynanfic configuration is about 250, in the Boeing configuration about

125 and in ttle AIPS configuration, assuming only tile processor modules use pro-

grammab]e computer, is 80. Given the uncertainty ia the coz_figuration azld the

designs particularly regarding computer requirements for propulsion, these should

not be compared. The point of importance to be considered is that a large num-

ber of embedded computers are required for this application. All of these computers

must interact in such a manner that real-time deadlines are met, maintained and

that overall synchronization and tinting is maintained. Design and validation meth-

ods which account for this complexity must be used to develop MPRAS applications.

Furthermore, the Boeing architecture is structured such that all time critical sen-

sors/actuators must reside in the propulsion/avionics (P/A) module.

The Boeing architecture distributes the 2 megabit/sec 1773 bus throughout the

vehicle while confining the 50 megabit/sec system busses to each F'/A module. The

General Dynamics architecture distributes the 50 megabit/sec vehicle management

and sensor data network bus throughout the vehicle. Maintaining the acceptable

timing and bit error rates for the faster bus over greater physical distances represents

a higher technical risk. There are some observations that can be made about specific

architectures. If the number of sensors/actuators required are increased, the Boei,lg
architecture linlits at 31 the number of remote terminals connected to each of the four

transducer busses. Additional sensors/actuators can be connected to the flight con tro]

bus ,but care must be exercised to not violate time criticality constraints associated

with the flight control bus.

The I/O net of the AIPS must be distributed throughout the vehicle. The AIPS

proof-of-concept I/O network bandwidth is two megabits/sec. This bandwidth is

expected to be increased to 20 or 30 megabits/sec. As such, its bandwidth will

fall between that of the Boeing and the General Dynamics architecture. While the

AIPS l/O network can be configured as linear connections from node to node, it

has features which permit use of spare links to reconfigure around failed links and

nodes. Use of this capability would represent a more efficient use of the AIPS I/O

network hardware. The recommended topology for the AIPS I/O nodes and links is

a binary tree with I/O nodes at each branch point and spare links included within

the tree. The partitioning of the I/O nodes into the vehicle sections and limitations

on the number of links which can cross a boundary between vehicle sections could

constrain the I/O network topology to an extent that the reconmmnded topology

cannot be fully realizable. The number of sensors and actuators handled by AIPS

can be increased by adding I/O nodes and DIU's to the I/O networks. This can be

accomplished up to the maximum allowable number of nodes in a network. Beyoad

this, new networks would have to be set up. The 4000-6000 sensors and actuators

required with a maximum combined bandwidth of 1 megabit/sec is well within the

13



capacity of the AIPS.
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2. INFORMATION REQUIREMENTS

2.1. Requested Information

General Discussion - The information requested for the assessment and charac-

terization of the MPRAS architectures was baseline MPRAS requirements, hardware

module specifications, software operating system specifications, application functional

description, descriptions of architectures and topologies to meet the application re-

(lllirements and descriptions of the fault avoidance and fault tolerance features of each

architecture. The information used for this evaluation encompasses all MPRAS parts

1 and 2 information reported through December 1989.

C'haracterizations capable of quantitatively discriminating between different "well

designed" architectures require high-fidelity architectural specifications. Such infor-

mation is consistent with the later stages of development. In the development stages

prior to the Preliminary Design Review (PDR), less precise information is available.

Consequently, the characterization of MPRAS architectures of necessity relied upon

qualitative evaluation factors, subjective measures and quantitative architectural pa-

rameter sensitivity analyses.

The following paragraphs describe the design information requested for tiffs effort.

6pecification of Hardware Architecture - The specification of the hardware

architecture requested the identification of all hardware functions including:

• power modules

• processor modules

• memory modules

• I/0 conmmnication links and modules

• data acquisition and distribution modules

• interprocessor communications links

• data buses

• maintainability features

• test interface modules

• testability features

15



• fault maskingand reconfigurationmechanisn_s

• error detectionmechanisms

• timing/clocking modules

A brief descriptionof eachmoduleor elementincluding relevantperformanceparam-
eterssuchasprocessorspeed,communicationsbandwidth, memoryread/write times,
communicationsoverheadand capacitieswasrequested.

In addition to performanceparameters,module failure ratesfor various mission
phaseswererequested. For designparametersthat werenot known, the assumed
rangeof valuesfor theseparameterswasrequested.

Specification of the Application and Architectures to Meet Baseline
Requirements - The applicationspecificationrequestedcalledfor a functional de-
composition. For eachsubfunctiona description of the inputs, processing,outputs
and specialrequirementssuchastransport delay,jitter andprocessupdaterate, was
requested. Processingworkload and information flow betweensubfunctionsas well
as the basisfor the workloadestimateswererequested.

A detailed audit of the sensorsand actuatorsrequiredto support the application
was requested.The audit called for specificationof eachsensor/actuator,the type,
proposedredundancy,numberof eachtype, numberof bits, source/destinationsub-
function associatedwith the sensor/actuator,associatedfailure rate for eachmission
phaseand on-line test and calibration requirements.

The proposedtopology for the hardwareelementsand interconnectionsfor each
vehicle configurationspecifiedin the baselinerequirementswasalso requested. In
addition, the allocationof subfunctionsto specifichardwareresourceswasrequested.

The overallmissionreliability and safetyrequirementsas wellas the size,weight
and powerof the MPRAS for eachconfigurationwererequested.

Specification of the Reliability and Fault Tolerance Features of the Ar-
chitecture - Specificationof the fault tolerancefeaturesof an architecturecalled
for the identification of the set of faults to be tolerated. Fault identification wasto
include type, frequencyof occurrence,dependenceon missionphaseor technology
and a characterizationof the errors inducedby the fault type. Error effectswereto
be characterizedby:

1. Count: singleversusmultiple

2. Origin: environmentalfactors

16



3. Activity: dormant versus active

4. Duration of activity: transient versus permanent

5. Extent: local versus distributed

6. Temporal behavior for multiples: coincident versus separated

7. Cause of multiples: independent versus common mode

Descriptions of the fault tolerance features such as error detection, error masking,

fault contaimnent, consistency, reconfiguration, redundancy, and redundancy man-

agement, was requested for each architecture. Recovery strategy descriptions for

both the local (subsystem) and global (system) levels were requested. Assumptions

for the effectiveness of error detection and for the times required to detect, recover,

and reconfigure and the techniques for providing fault-tolerant power, clocking, syn-

chronization and startup were also requested. Descriptions of fault tolerance features

called for the identification of those portions of each feature that were to be incorpo-

rated in hardware and those portions which were to be provided by software. Also,

the approach used to detect faults in the fault tolerance mechanism was requested.

The primary reliability parameters associated with tile architecture were requested.

These included, but were not linfited to, module failure rates, transient frequency and
l

duration, coverage parameters such as latency and detection effectiveness, redundancy

of each element and tile number of spares.

The techniques expected to be employed for fault tolerance in the application

software were to be defined. Methods and policies which were to be employed to

avoid software design faults and to provide software quality assurance were to be

identified.

Life Cycle Cost Report - A Life Cycle Cost (LCC) report which summarized

tile recurring LCC analysis for each MPRAS architecture was requested. It was

requested the report state all ground rules and assumptions used and identify all

factors included in tile recurring LCC. Assumptions regarding tile use of common

modules within the architecture, which are used in other avionics progran_s or in

ALS ground support, were to be stated. Assumptions regarding maintenance and

testability were to be included in the report.

System Software Architecture Descriptions - It was recognized that limited

information would be available regarding the system software architecture for some

of the MPRAS designs. To the extent that this information was available, it would

be used. The information of interest regarding system software architecture included

a description of control characteristics such as distributed, central or hierarchical and

17



descriptions of functions including task scheduling, I/0 services, interrupt services,

memory management, utilities, interprocessor communications services and functions

related to fault tolerance. Ill addition, performance information such as function

overheads, expected execution time for a given system function, function response

times and uncertainty in response times was requested.

MPRAS Engineering Trade Studies and Analyses - The engineering trade

studies and analyses conducted by the three MPRAS contractors to determine the

requirements and characteristics of the specified architectures were requested.

System Development Methods - The complexity and criticality of the nfission

requirements dictates the use of rigorous, systematic methods and policies for the

development of MPRAS. This is necessary to assure that all system objectives such

as cost, performance, reliability, safety and maintainability are met. Good engineering

practice dictates that these factors be addressed starting in the concept, requirements

and early design phases and continuing throughout the development.

To validate that the design objectives of a complex system are met requires that

systematic validation must be conducted throughout the system development starting

at the beginning of the development cycle. All elements of the architecture develop-

ment (application software, operating system software and hardware elements) must

be included in the design validation.

The methods expected to be used for the development of MPRAS will deternfine

to a large extent the potential for a successful development. Documentation of the

system development methodology that each contractor expected to use was requested.

2.2. Information Sources

Listed below are the information sources used to conduct the architecture character-

izations and assessments.

Boeing Aerospace

MPRAS System/Subsystem Requirements Document (SRD),

February 1989, Doc. No. 180-30579-2.

MPRAS Third Quarterly Review, March 1989

MPRAS Conceptual Avionics Architecture Specification,

July 1989, Doc. No. 180-30579-4.

MPRAS Fourth Quarterly Review, .July 1989

MPRAS Final Review, October 1989

MPRAS Preferred Vehicle Avionics Architecture Specification,

October 1989, Doc. No. 180-30579-5.
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MPRASCritical Item DevelopmentSpecification,GN&C Processor,
October 1989,Doc. No. 180-30579-7.

MPRASCritical Item DevelopmentSpecification,Local Signal
Conditioner,October 1989,Doc. No. 180-30579-9.

MPRASCritical Item DevelopmentSpecification,I/O Channel,
October1989,Doc. No. 180-30579-10.

General Dynamics Space Systems Division

MPRAS Reference Vehicle/Requirements, June 1989

Preliminary MPRAS Architecture Specification, Vol. 1,

Concept Specification, July 1989

Future Launch System Technology, Contracted Exploratory

Research & Development, MPRAS Review, July 1989

MPRAS Point Design, Fault Set, August 1989

MPRAS Point Design, Design Evaluation, August 1989

MPRAS Architecture Specification, Vol. I, September 1989

Draft Version, MPRAS Architecture Specification, Vol. II,

(Application to Advanced Launch System), September 1989

MPRAS Point Design, Fault Detection, Isolation, and

Recovery, September 1989

MPRAS ADP 2103, Technical Interchange Meeting, October 1989

MPRAS Point Design, Performance/Dependability Goals,

SCM, July 1989

The Charles Stark Draper Laboratory, Inc.

Advanced Information Processing System: Input/Output Network

Management Software, Contract NAS1-17666, May 1988

Completion of AIPS (FY 88 Tasks), Oral Review, March 1989

Validation of Core Fault Tolerance Concepts, AIPS Fault

Tolerance Concepts, March 1989

AIPS FTP Reliability Analysis, March 1989

MPRAS 2102: AIPS for ALS Review, Program Overview and Status

October 1989
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Other Information

Architecture Specification for PAVE PILLAR Avionics,

SPA90099001A, January 1987

Modular Avionics, IBM Product Specifications for JIAWG Modules

Application of Fault Tolerance Tedmology, Vol. I, Design of

of Fault-Tolerant Systems, SDIO BM/C z Processor and Algorithm

Working Group, Avizienis, A. and Gillev. G., Editors

Application of Fault Tolerance Technology, Vol. II, Management

Issues: Contractor Milestones and Evaluation, SDIO BC/C 3

Processor and Algorithm Working Group, Renneis, D.

Gilley, G., Editors

RADC Testability Notebook, RADC-TR-82-189, Hughes Aircraft

Reliability Handbook, MIL-HDBK-217E
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. RELIABILITY, AVAILABILITY,
MAINTAINABILITY AND TESTABILITY

EVALUATION

3.1. Introduction

Reliability and ttle closely related characteristics of maintainability, availability,

testability and fault tolerance are of prilne importance in the design of the MPRAS

architecture. Not only does improved reliability lead to cost reductions through

reduced logistics support costs, it enables introduction of functionality into tile

avionics that will support reduced integration testing and operations costs.

Tlle avionics used ill current launch vehicles provide tile basic mission functions

with moderate reliability, hnprovements in the reliability of tile basic systems would

result in reduced life cycle costs through reduced support costs. The avionics

necessary to provide functionality such as adaptive, guidance, navigation and

control (AGN&C) integrated health monitoring, and increased vehicle autonomy for

a complex vehicle could require thousands of sensors and in excess of 100 electronics

modules. If the average module MTBF for the prelaunch environment was 100,000

hours, tile reliability of the avionics at the end of 200 hours on the launch pad

would be about 0.8. If the average sensor MTBF was 50,000 hours, it would be
|

reasonable to expect 10 or so sensor failures at the end of 200 hours on the pad.

Fault-tolerant avionics architectures are required to provide the advanced functional

capabilities while at tlle same time meeting reliability requirements.

Consider using a simple fault-tolerant architecture with three independent

redundant channels whose output is voted. If tlle overall unreliability must be less

than I x l0 -5 and the exhaustion of components is the primary failure mechanisln,

the probability of failure for each channel must be less than about 1.82 x l0 -3. If

100-200 modules are required ill each channel, the average module failure rate must

be between 5 x 10-S/hour and 10-4/hour for 10 minutes in the missile launch

ellvironment.

Even if it is assumed that this failure rate is the MIL-HDBK-217E predicted failure

rate and that it is not necessary to account for the transient failures, a higher rate

than the 217E rate, the failure rate/module for ground-fixed environment must be

between 10 -5 and 2xl0-S/hour.

This failure rate is at or below that for modules of the complexity of processors,

memory, and I/O controllers implemented using current VLSI technologies. One

must conclude that it would be difficult to achieve the desired reliability with a

simple independent redundant 3 channel system.
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Figure 3.1diagramsa frameworkfor reliability evaluation. Evaluation starts at tile

mission requirements level and incorporates tlle system architecture, tile technology

of implementation, and tile appropriate failure processes.

Mission Characteristics and Requirements
(Type, Duration, Environment,

Performance, Reliability)

Models Characteristics

Reliability
Determination

Requirements

Figure 3.1. Framework for Reliability Evaluation

The three areas of focus for reliability deternfination are thus: 1) missions, fault

models, architectures and technologies; 2) reliability determination requirements;

and 3) methods and tools.

The MPRAS application characteristics which impact reliability modeling

requirements are mission criticality, many distinct mission phases with diverse

activity levels and reliability requirements, a relatively large number of distributed

system modules and a harsh operating environment.
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The high systmnreliability requirenwntsdictate tile needfor a f_dt-toh'rant

system. Such systems have to be carefully evaluated to &,termim, whether or not

the requirements arc met. Fault tolerance ill{'t'll&lliSlllS makes evah_ation more

difficult 1,y im:reasing the number and complexity of significant factors afh.ctiug

system reliability.

Except fl_r the 10 minute launch phase, mission profiles for all three architectures

ditfer significantly. Table 3.1 summarizes the various phases and their duration.

One of the most important differences is the amount of time that the avionics is

powered prior to branch. There is a factor of 8 between the shortest and the longest
tilne.

BOEING GENERAL-DYNAMICS MARTIN/DRAPER
Phase ltrs l|rs l_'hase Hrs ttrs Phase "" Hrs ltrs

On Off On Off On Off

Recowwy 8 2 Fctry Chckt 136 ",800 Rec&Refrl)sh 200
Refurbish 150 150

Tnk,P/A Mte 8 16 Vert Integ l0 ,-_100 lnteg&Rllt 400

(:r,Bst Mate 32 88

Payld lnteg 90 Cargo lnteg 6 .... LiO0

Launch Pad 48 32 PreLaunch 25 ,-_100

Ln'ch / Ascnt O. 15 Flight .17

Core Pow Fit

C' Eng Shtd

Orbit 12.65 On-Orbit

Payld Sprtn

Core DeOr

RecModRbst 0.1 PA Mo'd Sprtn

RecModFlt 33.2 PA Recovery

BRM Sprtn

BRM Recvry

Table 3.1. Mission Phases

PreLaunch 200

Ascent 17

On-Orbit 1.5

Flyback .17

This difference would result in significantly different failure states at launch time

and directly impacts the availability of the avionics for launch.

Various reliability requirements have been put forth for MPRAS applications.

Boeing indicates a requirement of 0.999998 for the first flight of the core recoverable

P/A module and a 0.9999 for the 50th and last flight for that module. A reliability

of 0.9999997 is allocated to computing and 0.9999984 is allocated to I/O. General
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Dynamics has put forth a requirement of 0.99999 at tile end of a 10 nlinute launch

phase with tile assertion that reliabilities better than 0.9999 are not likely to be cost

effective. General Dynamics has set a pre-launch availability goal of 0.99954 and
100% fault detection for all test methods combined with 99% from built-in-test

features of the VLSI chips.

The fault models for the reliability analysis will include transient and permanent

faults. The failure rates for the modules will be for the most part based on

MIL-HDBK-217E. Permanent failures will use the base rates adjusted by the

appropriate zNcroelectronics environmental factor for the mission phase of interest.

Allowance for transient failures occurring at rates faster than the permanent failure
rate will be made.

Other fault models that should eventually be taken into account for MPRAS

reliability evaluations include the common mode failure. The conunon mode failure

violates the independent failure assumption upon which the reliability of redundant

systems is based. Mechanisms need to be included in the design to cope with

important subsets of common mode failure mechanisms. Since there may be up to

200,000 commctor contacts in an MPRAS application, other fault mechanisms such

as intermittent failures due to mechanical vibration should also be included. The

electromagnetic environment (EME) within which the MPRAS system operates can

pose a significant threat to the safe operation of these systems. Whether by

radiation or conduction, electrical energy from on-board components, radar

equipment, and RF communications equipment and from external sources such as

lightning strikes, high energy radio frequency broadcasts (HERF), nuclear radiation

and electrostatic discharge can couple into digital microelectronics and induce

faults. Digital microelectronic systems are particularly vulnerable to this coupled

energy because of fast circuit switching times, the relatively small amount of energy

required to upset their operation and the fact that critical operating state

information stored in registers and memories can be easily lost.

The NASA Langley reliability modeling support tools ASSIST and SURE were used

for reliability analyses.

3.2. Hardware Module Failure Rates

Projected failure rates for the General Dynamics and Boeing MPRAS hardware

modules were not reported in the MPRAS documentation. Boeing, however,

specified reliability objectives for each major hardware unit. Since JIAWG or

JIAWG-like modules were proposed for most of the hardware functions, it was

decided to use the failure rates for these modules as the basis for reliability analyses.
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Tile MIL-HDBK-217E-predicted failure rates that were available for .JIAWG

modules of interest are shown ill TAble 3.2. These failure rates [lave been translated

to tile Ground Fixed environnmnt. The (;round Fixed environment will be used for

tile pre-launch on-pad portion of tile M PRAS mission. Tile assumed failure rates for

General Dynamics hardware modules are given in Table 3.3. Tile rate for the

self-checking processor is an estimate which assumes that two processors, two 1

megaword memories and two program ROM's are on the board along with a single

test and maintenance processor and a self-checking comparator. This estimate

assumes a memory failure rate of 1.6 x 15-S/hr for 1 megaword memory when

added to an existing module. Ceneral Dynamics did not address the feasibility of

this degree of complexity for a module or if a 10 MIP self-checking processor can be

designed to have a power consumption of 10 to 15 watts. Tile General Dynamics
Local Data Link has not been defined. Its failiare rate will be assumed to be the

same as a JIAWG data processing module.

Table 3.4 gives the failure rates projected for the Boeing hardware modules. The

Fault Tolerance Module for the Boeing architecture was not well defined. BAsed on

rough descriptions of its functionality And a block diagram, it is judged to be of the

same complexity as the Processor. It has less memory but has the added function of

a voter, cross-channel interfaces and a bus switching unit.

Tile AIPS FTP failure rates have been reported for a VLSI implementation. Tile

failhre rates include an I/O processor and a computation processor along with two

floating point co-processors, a megabyte of PROM and RAM memory And

associated glue logic. Table 3.5 details these failure rates for the Ground Fixed

environment factor.

In order to get the FTP failure rate more or less on an equivalent footing with the

failure rates used for the processors used in the Boeing and General DynAmics

architectures, the FTP memory failure rates were modified to be consistent with

those used in the JIAWG modules. These are:

* 1.6 x 10-5/hr for adding 1 megaword RAM to an existing module

a megaword PROM to an existing module* 5 x 10-n/hr for adding

An additional 6 x I0-S/hr was added to cover the addition of a test And
mAintenAnce interface.

The failure rate for the remaining FTP functions such as the Input/Output

Sequencer, the Intercomputer Communications Interface Sequencer, the shared

memory, the Communicator (voter) and Dual Port Memory are not known.

However, assumptions were made for them based on rough estimates of function
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Module Failure Rate (Ground Fixed)

Processor 3.8 MIPs

1750A processor Power: 21 watts
512K word RAM

16K Word EEPROM

Test/Maintenance Processor

Power Supply Module

5v t@ 44 amps

1553B Interface

1750A processor Power: 21.5 watts

128K word RAM

16K Word EEPROM

Test/Maintenance Processor

High Speed Bus

1750A processor Power: 31.5 watts
128K word RAM

16K Word EEPROM

Test/Maintenance Processor

Bulk Memory

512K word EEPROM Power: 15 watts

16K Word EEPROM

Test/Maintenance Processor

2.4 x 10-S/hr

8 x 10-_/hr

1.8 x 10-S/hr

2.4 x 10-S/hr

1.4 x lO-5/hr

Table 3.2. MIL-HDBK-217E Failure Rates for JIAWG Modules
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Module

Self-checkingProcessor

Local Data Link
(Voter)

High SpeedData Bus

PowerSupply

Failure Rate
(Ground Fixed)

6 x 10-S/hr

L4 x 10-S/hr

2 x 10-S/hr

8 x 10-6/hr

Table 3.3. Failure Rates for General Dynamics Modules

Module

enlory . .. ,__,_ .

I Fault ToleranceModule '

I (Vot+r) ,

I Power Supply ,,_.

I High Sp_d Data Bus I/F

1773 I/F

"allure Rate

2.4 x 10-S/hr

2.8 x 1O-5/h r

2.4 x 10-S/hr

8 x 10-6/hr

2 x 10-S/hr

1.8 x 10-5/hr

Table 3.4. Failure Rates for Boeing Modules
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Component

Failure Rate

((;round Fixed)

Processors

(IOP, CP & 2 floating points

(and glue)

RAM (BiPolar)(1Megabyte)

PROM (Megabyte)

11 x 10-6/hr

320 x 10-6/hr

35 x 10-S/hr

Table 3.5. FTP Failure Rates

complexity. That is, there is no basis other than engineering judgement for their

values. Table 3.6 gives the failure rates used for the AIPS modules.

Figure 3.2 gives the projected failure rates for processing channels in each of the

architectures based on the rates for component modules. A key parameter in

determining the reliability of MPRAS architectures during the launch phase is the

transient failure rate during this phase. For this evaluation, this rate was assumed

to be in the range of 2 to 10 times the 217E rate for the missile launch environment.

Tile sensor interface hardware was the least defined component for all of the

proposed architectures. Consequently, estimates of the failure rates were made. It

was assumed that all implementations would involve the use of sinfilar components.

It was further assumed that the General Dynanfics Sensor Interface module required

fewer parts since it was part of a larger assembly (RDI). Consequently, it shared

certain common components such as power supplies with other functions, whereas

tile Boeing Local Signal Conditioner and presumably the Draper Device Interface

Unit are self contained. The items included in the estimate are A/D converters, Bus

I/F's, Multiplexers, 30 Differential Amplifiers, Power Supplies (low current) and test
electronics. Table 3.7 shows the failure rates used for the sensor interface.

The failure rate estimates are based on a minimum of design information and were

made by RTI for the purpose of doing rough overall system reliabi!ity comparisons.

These estimates are believed to be reasonable but are not represented as accurate.

It is assumed that the three contractors can implement the function with equivalent

failure rates. The sharing of common components across several functions inherent

in the General Dynamics RDI modularity is reflected by the lower failure rate for the
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Component

Failure Rate

•(Ground Fixed)

Processors

(lOP, CP, Memory)

Shared Resources

(Data Xchg, Memory)

1/0 Sequencer

IC I/F Sequencer

Power Supply

I/O Node

3 x 10-S/hr

2.5 x lO-S/hr

2 x 10-S/hr

2 x 10-S/hr

8 x 10-6/hr

2 x 10-S/hr

Table 3.6. AIPS Module Failure Rates
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GENERAL DYNAMICS

(1 megaword RAM)

= 8 60 24 2O

Note: Not clear how to add memory w/o adding SCP's

6
Total /10 hrs (GF)

112

BOEING AEROSPACE

(1/2 megaword RAM)

Mem |

"_...J __J _ _ _ ",.._..,"

X = 8 24 24 20 18 28/

94 + Mere

),

AIPS

(1 megabyte)

= 8 30 25 20

Note: Assumes that memory modules can be added

20 28/

Figure 3.2. Core Processing Single Channel Failure Rates

83 + l/O

+ Mem
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Component
FailureRate

(Ground Fixed)

Local SignalConditioner
(Boeing30 inputs)

DeviceInterfaceUnit
(AIPS 30 inputs)

SensorInterfaceModule
(GeneralDynamics30 inputs.)

2.6 x 10-S/hr*

2.6 x lO-S/hr*

1.5x lO-S/hr*

*Note:Thisrate is 30% higher than the design
objective of 0.999 reliability for a 48 hour mission

called out for the Boeing Local Signal Conditioner.

Table 3.7. Sensor Interface Failure Rates

Sen_or Interface Module. Since these modules will be used extensively in MPRAS,

they can influence overall system reliability. Consequently, good reliability estimates

for these modules should be a priority for tile MPRAS module design specifications.

3.3. Core Processing Functions

Preliminary Discussion - Core processing resources for tile MPRAS applications

will be made up of a number of distributed processing centers. Depending upon

which architecture and which design options are exercised, these processing centers

may be configured as separate multi-channel redundant processors or configured

such that all processing centers function as a multi-channel redundant system.

As discussed in the previous section, the MPRAS mission is multi-phased. The

reliability of the on-pad and launch phases of the mission is the focus of the

reliability analyses discussed in this section. Analysis was carried out for a

quadruplex and triplex for both the on-pad and launch phases. Reliability models

for these cases were built using ASSIST and analyzed using SURE.

Prior to describing these models in detail, an approximate analysis of the essential
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parts of these models will be reviewed.
d.°=pm°°...o°°l.oD.* .... •

l |

I for mote than [

4_/ I" °='°e"t=°Bm'°° °= "'u°edl

3Ap

I System Fail

Figure 3.3. Quadruplex On-pad Model

Consider a quadruplex prior to launch. Ill state 4 of Figure 3.3, all redundant

channels are functioning properly. Upon failure, and assuming that no

near-coincident second failures occur, a relatively fast recovery process successfully

isolates the faulty channel with a probability of C_. For those faults that are not

detected and isolated by the fast process, a slower, more thorough fault detection

process (pre-launch diagnostics) may detect and isolate the faulty processor.

Otherwise, the system enters a state (Vv) where a fault has occurred but has not

been detected. In this state, the system is believed to be fully functional. The

system leaves this state if another fault occurs in the faulty processor, or if a fault

occurs in another processor. In state Vp, the system is vulnerable to additional

failures. If the vehicle is launched while in this state, the next fault that occurs

could result in loss of the vehicle. While a latent fault that could not be detected

and isolated with pre-launch diagnostics may not be error-producing after another

fault occurs, the conservative assumption is that it will be and as such leads to

system failure. Assuming that _ and "-/are much faster than the failure rate A, the

probability of being in state Vp is approximated by:

Pq[Vp] "" 4Ap(1- G)tt, (3.1)
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where: )_p = pad failure rate

(7v = effective coverage of fast and slow fault detection

tp = tilne on pad

For a triplex, equation 3.1 becomes:

PT[Vp] _ 3_p(1- Cp)tp

Undetected X/ I._%.

failure du_ing / Jr _'

pre,auoch_) (_,.

3)k L

To Model States

for more than

e

two failures
e

e

i

i

|o° °.o...oo =. =°.o.ooo =.mo

3XL

EG G l...I o
Figure 3.4. Quadruplex Launch

Figure 3.4 shows a portion of a reliability model for the launch. Tile states are
defined as follows:

(3.2)
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State Description
4

Vp

X

½

SL_

All 4 channels operational at beginning of launch interval

An undetected channel failure occurred during tlle on-

pad phase

Recovery state

Undetected channel failure during launch interval

;3 operational channels with a failed channel properly

eliminated. System can be in this state at beginning of

launch due to an on-pad failure or due to a failure after
launch

System failure states

During launch only a relatively fast fault detection and isolation process is assumed.

As long as the fault detection and isolation is not successful, the system is

vulnerable to additional faults. If the system starts in a vulnerable state from the

pre-launch phase, it remains vulnerable to additional faults. For tiffs analysis, it is

assumed that after launch any fault which occurs when the system is in a vulnerable

state will result in tile loss of tile vehicle. Vulnerable states associated with

transitions out of the three-operational channel state are included in the model but

will not be analyzed for this discussion.

The probability of reaching state SLa, that is, the probability of losing the vehicle

due to incurring additional faults after having launched in a vulnerable state, is

approximated by:

/ \
tL

I
(3.3)

F,

tL

= the failure rate environment factor for missile launch

= the failure rate environment factor for ground
fixed form from MIL-HDBK-217E

= the ratio of the rate of occurrence of transient

faults to the permanent fault failure rate

= duration of the launch phase.
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Substituting equation3.1 for ['q[Vp] yields:

PqF'L,]-_ 12gt,tL[1- C,]_--Z'(l + F,) (3.4)
71"ep

Similarly, the probability of vehicle loss for a triplex due to launching in a

vulnerable state is given by:

Pt[,%'L,] _-6l_tptL[1- Cp]_-_-pt( 1 + F,) (3.5)

The probability of reaching state ,q'L2 is approximated by:

6Apt L (1 + Ft) (1"- CL)P[.state 4 at launch] (3.6)

Substituting for P[state 4 at launch],

[PQ[','L._] _- 6A, tL22 7r_,(1 + F() (1 - Cr)e -4_''" (3.7)
[./l'ep

Sinfi]arly, for a triplex

PT[SL.2] ' _ _ __1(1 +. _-3_.tL F,) (1-CL)_ -_.'.. (3.8)
[ "lrep

The probability of vehicle loss for a quadruplex due to exhaustion of components,

assuming that a duplex cannot be recovered and that the system starts in state 4, is

approximated by:

PQ[, LE] "_ 12AptL (1 + F,) (3.9)

Sinfilarly, the exhaustion probability for a triplex becomes:

__ 3Apt L (1 + F,) (3.10)

Comparison of the relative magnitude of each of these quantities is of interest.

Consider the ratio of PQ[SL,] : PQ[5'L2]:

PQ[SL1] [1 Cp]
'L - 2_ -

_r_, 1 1
(3.11)

This ratio ranges from about 0.5 to about 100. For the following parameter ranges
of interest:
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25 hrs < tp< 200 hrs,

tL = 0.167 hrs

0.9 _< Cp< 0.99,

0.9 < CL_ 0.99,

C,_>C:L,
L_. = 2..__E5
_et 13 '

Ft = 10,

10-4<_A__<10 -3

Note that Cp = .99 is consistent with the built-in-test design goal for fault

detection of the General Dynamics MPRAS modules. For short pre-launch phases

combined with lower but reasonable coverage of failures during launch, the two

modes of failure contribute more or less equally to system failure. As the pre-launch

phase is lengthened, the failures due to launching in a vulnerable state dominate.

This donfinance can be reduced by improving the coverage of the pre-launch tests.

Consider the ratio of PQ[SL_] : PQ[SLE]:

PQ[SL1] _ [1- Cp]t l, [rr, 7, 1 ]2
(3.12)

PQ[5'LE] A_,t_ '[ _r., (1 + F,) J

For the parameter ranges of interest, this ratio varies from 2.8 to 2200. That is, the

probability of failure during launch due to lack of coverage in the pre-launch testing

dominates the probability of launch failure due to exhaustion of components.

The second exhaustion of components failure mode for the quadruplex during

launch occurs when the system is reconfigured to triplex prior to launch. The

probability of failure for a degraded quadruplex due to exhaustion of components is

approximated by:

( )'PoD[SL ] '_-- 3Ant L Ft) PQ[degenerates to 3 on pad] (3.13)
\ 7fe_

Substituting an approximation for the probability of degrading to triplex during

pre-]aunch, equation 3.13 becomes:

( )'PQD[SLE] 2 2 _r,,(1 +.3A, tt, f,) (1 - e-4_'t')Cp (3.14)
\ _ep

Consider the ratio of PQ[SLa]

Po[SL ]
PQD[SLE]

: Pqo[SL ];

(,,)= 4 _L r.t(1 + F,)Cn(1 - e -'A,'_')
0. 5)
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This ratio ranges between 1 and 117 for tile parameter ranges of interest. Tile loss

of all avionics processing site due to lack of coverage in tile pre-flight diagnostics is

about tile same as or is much greater than tile exhaustion of components.

1 " . .) *'( onslder the ratio /:QD

_' 1PQr [,LE]
= ..... (1 -e -4a/") (3.16)

PO,[5,'LE] 4AptL r_t (1 + F,)

This ratio ranges between about 2 and 20 for parameter ranges of interest.

From these simple calculations, it can be determined that for the ranges of

parameters assumed, the two main contributors to the failure of an avionics

processing site are: 1) failure due to launching with undetected failures and 2)

failure due to attrition of components from sta:rting launch with a quadruplex

degraded to a triplex.

Self-Checking Pair with a Spare - The self-checking pair (SCP) with a spare is

the basic processing kernel for each channel of the General Dynamics architecture.

An SCP has a failure rate that is nominally twice as fast as that for a single

processor. However, the SCP should result in higher fault coverage and reduced fault

latency than methods that rely only on background diagnostics, memory tests and

voting of computed application data with that from redundant computing channels.

A Markov model for a self-checking pair architecture with one spare is illustrated in

Figur e 3.5. This model contains states and transitions to capture the occurrence of

both permanent and transient faults in the active pair and in the spare pair. It also
contains states and transitions to model the detection of a fault in the SCP and the

replacement of the faulty SCP by the spare SCP and to model the return of a

processor to the spare pool after experiencing a transient fault.

The states in this model can be represented by a vector

S=(SCP,S,T,P), where

SCP = the number of operational SCPs

S = the number of operational spare SCPs

T = 1 if the fault is transient,

0 otherwise

P = 1 if the fault is transient,
0 otherwise

Transitions from one state to another in the model are made according to the

following rates and probabilities:
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• DELIVERING BAD DATA
TO CHANNEL

Figure 3.5. Self-Checking Pair with Spare Model

_p

,IT

Pc

P

Permanent Processor Failure Rate

Transient Processor Failure Rate

Probability that fault is detected and spare

is successfully switched in to replace failed SCP

Rate at which fault is detected and spare is

switched in to replace failed SCP

Rate at which SCP failed due to a

transient fault is recovered

The states in this launch model are described in the following table:

State Number

3

4

State Vector

(!,!,0,0)

O.o,oj)
Spare m_available due to permmlent fault

(I,0,I,0)

Spare unavailable due to transient fault

(O,l,0,t)

(0,1,1,0)

(0,0,0.0)

Description

I operational SCP

I available spare SCP

! operational SCP

1 operational SCP

O operational SCPs due to permanent fault

! available spare SCP

0 operational SCPI due to tra_J_Jen¢ fault

1 available spare SCP

0 operational SCPs
0 operat[onal spare SCPI
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This model was analyzed for both tile on-pad and launch mission phases.

Figure :3.6 shows the probability of failure for a selLchecking pair with a spare as a

function _f mission tilne and as the coverage factor, t(., is varied. The transient

faihH'e rate is assulned to be zero and the permanent failure rate, Ap, is assumed to

be 6 x 10-S/hour. When transients are included at a ,'ate of 10Ap, the unreliability

results are increased by about a factor of 10. This is due to the modeling

assumption that transient faults that occur after either the primary or spare S(JP

has failed cannot be recovered and results in the cham_el failure. This assumption is

appropriate for launch. Prior to launch this SCP could be recovered.

For a permanent failure rate of 3 x 10-S/hr for each processor in the SCP, the

average failure rate for an SCP with a spare is 1.32 x 10-6/hr for a 200 hour mission

and is about 7 x 10-_/hr for a 25 hour mission. These compare to 6 x 10-S/hr for

an unspared SCP. Note that this improvement in reliability is accomplished through

the use of four single processor units with memory.

Quadruplex On-pad - A Markov model for a quadruplex architecture during the

on-pad mission phase is illustrated in Figure 3.7. This model includes fault

occurrence and fault handling states for both permanent and transient faults. For

both permanent and transient faults, the model contains fault handling states for

both fast detection/isolation/and recovery mechanisms such as switching out

out;voted processors and slower mechanisms such as memory scrubs. For example,

state 11 represents a fast FDIR process after the occurrence of a permanent fault.

This process leads to a recovered state where the failed processor is switched out

(state 13) or to a slower diagnostic process (state 14). The slower diagnostic process

state can lead to system failure if another fault, occurs, to the recovered state (state

13), or to an undetected fault state (state 19).

Since this is a model of system behavior during the on-pad mission phase, system

failure has to include the inability to launch. States 10 - 23 in Figure 3.7 are

operational states, and states 1 - 9 represent system failure states and those

operational states that preclude vehicle launch. Of the states from which a launch is

possible, the following are of sufficiently high probability to be included in the

launch-phase model: state 10 (4 nonfaulty processors), 13 (3 nonfaulty processors),

19 (4 operating processors, one with an undetected fault), and 23 (3 operating

processors, one with an undetected fault).

The states in this model can be represented by a vector

S= (N,P,T,R,F,U PF,UTF), where

N = the number of operational processors in the state
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Figure 3.7. Quadruplex On-Pad Model (State descriptions are ill following text)
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P =1
0

T =1
0

R =0
1
2

F =0
1

UPF = 1
0

UTF = 1
0

if a permanent fault has occurred,
otherwise

if a transient fault, has occurred,
otherwise

if no detection/isolation/recovery actions are in progress,

if fast detection/isolation/recovery actions are ill progress,

if slow detection/isolation/recovery actions are in progress

if vehicle can be launched from this state,
otherwise

if there is an undetected permanent fault present,
otherwise

if there is an undetected transient fault present,
otherwise.

Transitions from one state to another in the model are made according to the

following rates and probabilities:
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,kp

AT

(;PI

C'P2

CT1

CT2

61

7

#1

K

Permanent failure rate of a processor

Transient failure rate of a processor

Probability that permanent fault is detected, isolated,

and the failed processor switched out as a result of

fast diagnostics

Probability that permanent fault is detected, isolated,

and the failed processor switched out as a result of

slow diagnostics

Probability that a transient fault is detected and

isolated as a result of fast diagnostics

Probability that a transient fault is detected, isolated,

and the processor recovered as a.result of slow diagnostics

Rate at which a permanent fault is detected, isolated,

and the failed processor switched out as a result of

fast diagnostics

Rate at which a transient fault is detected

and isolated as a result of fast diagnostics

Rate at which a permanent fault is detected, isolated,

and the failed processor switched out as a result of

slow diagnostics

Rate at which a processor with a transient fault

is recovered as a result of fast diagnostics

Rate at which a transient fault is detected, isolated,

and the processor recovered as a result of slow diagnostics

Percentage of permanent faults whose errors cannot be masked

when another undetected fault is present in the system

The states in this on-pad model are described in the following table:
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State Number

10

11

12

13

14

15

16

17

18

19

2O

21

22

State Vector

3

4

(4,0,0,0,0,0,0)

(4,1,o,i,o,o,o)

(4,0,1,1,0,0,0)

(3,0,o,0,0,0,0)

(4,1,o,2,o,o,o)

(4,0,1,0,0,0,0)

'(4,0,1,2,0,0,0)

'(3,,,O,l,O,O,O)

(3,0,1,1,0,0,0)

(4,1,0,0,0,1,0)

(3,1,0,2,0,0,0)

(3,O,l,O,O,O,O)

(3,o,1,2,o,o,o)

Description

4 operating processors

No faults

4 operating processors

1 permanent fault

Fast FDIH ill process

4 operating processors
1 transient fault

Fast FDIR ill process

3 operathlg processors

! processor switched out due to permmlent fault

4 operating processors

1 permanent fault

Slow FDIR ill process

4 operating processors
Trmlsient fault detected a_id isolated

4 operathlg processors
1 trmmlent fault

Slow FDIR ill process

3 operathlg proce_ors

1 permmlent fault

Fast FDIR in process
3 operathtg processors
1 trattsient fault

Fast FDIR ill process

4 operathlg processors

1 tmdetected pennmlent fault

3 operatiilg processors

1 penumlent fault

Slow FDIR in proc_

3 operathlg proce_rs
Trmmient fault detected mid isolated

3 operathlg proce_o_
1 trmlsient fault

Slow FDIR in process

23 (3,1,0,0,0,1,0) 3 operating processors

1 u_ldetected pennmlent fault

1 (2,0,0,0,0,0,0) 2 operathlg processors

No faults

(hdam_chable

2 (2,1,0,0,1,0,0} Second failure duriiqg recovery

from permazlent fault

(2,1,0,0,1,1,0) Second failure while undetected

0,1,o,o,i,o,o)

(I,I,0,o,1,1,0)

(z,O,l,o,1,o,I)

(i,O,l,O,i,o,u

(4,O,l,OTb,o,_)

perma_lellt fault exists

Second failure during recovery

from penuanent fault
Second failure wlfile mldetected

pennaneat fault exists

Second failure during recovery
from tramient fault

Second failure duxiztg recovery
from trmmieut fault

Unsuccessful detection, isolation,

mid recovery from trmtslent fault

9 (3,0,1,0,0,0,1) Unsuccessful detection, isolation,

aa_d recovery from trazlsient fault

This model was used to determine the probability of being in various states at the

end of the pre-launch phase. These probabilities will be used to initialize the
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starting statesof the launchmodel. Of particular interest is the probability of being
in a state wherea failure hasoccurredbut ])asnot beenidentified and the faulty
unit hasnot beenremovedfrom voting. Figure3.8showsa portion of the model
results for the undetectedfailure state given variouseffectivecoverage values and

channel failure rates between 5 x 10 -s and 1 x 10-3/hr at the end of 200 hours of

powered operation prior to launch.

Tim results for pad times of 25 and 50 hours are approximately gthl and ¼th

respectively of the 200 hour results. These results were used to ins)an)late the state

probability for the imperfect diagnostics state in the launch lnodel.

Figure 3.9 shows the probability that a single quadrupiex processing site will

degrade sufficiently to prevent launch at the end of 200 hours of pad time for

channel failure rates between 5 x 10 -s to 10-3/hr.

Quadruplex Launch - A Markov model for a quadruplex architecture during the

launch mission phase is illustrated in Figure 3.10. This model combines the

permanent and transient processor failure rates of the on-pad model with a launch

environment factor into one processor failure rate, AL. The model contains fault

occurrence states for up to 3 faults, allowing the initial quadruplex configuration to

degrade to a simplex. The fault handling mechanisms are modeled simply as a

holding state which leads either to a recovered state or to system failure. Since the

ability to degrade from a duplex to a simplex relies on a different fault isolation and

recovery mechanism than is required for the other reconfigurations, a different

recovery rate and probability are assigned to the duplex-to-simplex transitions.

States 9 and 12 it) Figure 3.10 represent the probability that the launch nfission is

begun when an undetected permanent fault is present in the system. (liven that the

initiation of the launch phase is contingent upon the successful completion of the

on-pad phase, states 7, 10, 9, and 12 are assigned initial probabilities equal to their

occupancy probabilities at the completion of the on-pad phase. These occupancy

probabilities are determined from the on-pad model described previously.

The states in this model can be represented by a vector

S=(N,F,R, UF), where

N = tim immber of operational processors in the state

F = 1 if a fault has occurred and detection�isolation�recovery

actions are in progress
0 otherwise

R = 1 detection�isolation�recovery actions are unsuccessful or

a second fault has occurred during

detection/isolation/recovery
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Figure 3.10. Quadruplex Launch Model (State descriptions are in following text)
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0 otherwise

ITF = 1 if there is an undetected fault present,

0 otherwise

Transitions from one state to another in the model are made according to the

following rates and probabilities:

AL Failure rate of a processor

C1 Probability that a fault is detected, isolated,

and the failed processor _witched out given that

there are more than 2 non-failed processors

C2 Probability that a fault is detected, isolated,

and the failed processor switched out given that

there are only 2 non-failed processors

(_l The rate at which a fault is detected, isolated,

and the failed processor switched out given that

there are more than 2 non-failed processors

(_2 The rate at which a fault is detected, isolated,

and the failed processor switched out given that

there are only 2 non-failed processors

The states in this launch model are described in the following table:
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State Nu rebel"

7

8

10

II

12.

13

14

15

1

State Vector

(4,0,0,0)

(4,_,o,o)

(3,1,0,0)

(3,o,o,1)

(2,o,o,o)

(2,1,o,o)

(1,0,0,0)

(4,1,o,1)

(4,O,l,O)

(3,1,o,1)

(_,o,1,o)

(1,O,l,O)

(0,0,0,0)

Description

4 operathlg processors
No faults

4 operathlg processors
1 fault

FDIR ill process

4 operating processors

I mldetected fault (due to on-pad failure)

3 operating processors

1 processor switched out due to fault

3 operathtg processors
1 fault

FDIR hi process

3 operating processors

I m_detected fault

2 operathlg processors
No faults

2 operathlg processors
1 fault

FDIR in process

1 operathlg processor
No faults

4 operati_lg processors
a fault has occurred wlfile an

undetected fault is present

4 operathlg processors

detection/isolation/recovery actions are
m_successful or a second fault has occurred

during detection/isolation/recovery

3 operath*g processors

a fault has occurred while ml

mtdetected fault is presealt

2 operating processors

detection/isolation/recovery actions are
m_successful or a second fault i_as occurred

during detection/isolation/recovery

1 operath_g processor

detection/isolation/recovery actions are
m_successful or a second fault has occurred

during detection/isolatlon/recovery

no operating processors

The launch model for the quadruplex was examined using different permanent

failure rates, different transient failure rates, different launch fault coverage factors,

and different pre-launch powered avionics times.

Table 3.8 gives the probability of system failure due to imperfect pre-launch

diagnostics for various failure rates, pre-launch intervals, and diagnostic coverages.

Transient failures are assumed to be 10 times the permanent rate.

Regardless of the length of the pre-launch interval, pre-launch diagnostic coverages

greater than 0.99 would result in unreliabilities better than 3.9 x 10 -6 or better for

all channel failure rates considered. For a 25 hour pre-launch interval, coverage of

0.9 or better result in unreliabilities better than 4.9 x 10 -6. There are conlbinations

of pre-launch coverage, pre-launch time and channel failure rate which will cause the

5O



Pre-launch Time

(hrs)

25

50

2O0

Channel Failure Rate

(Ground Fixed)/hr

5x10 -s

10 -4

5x10 -4

5xlO -s

10-4

5xlO -4

5xlO -s

10-4

5xlO -4

0.9

7xlO -7

2.8x10 -6

4.9x10 -s

1.4xlO -6

5.5x10 -6

9.8x10 -6

5.6xi0 -s

2.2x10 -s

3.9x10 -s

Pre-launch Coverage

0.95

3.5x10 -s

1.4xlO -6

2.5x10 -6

7x10 -7

2.8x10 -6

4.9x10 -6

2.8x10 -6

1.1xl0 -s

2x10 -s

0.99

7xlO -s

2.8x10 -r

4.9x10 -7

1.4xlO -_

5.5x10 -r

9.8x10 -7

5.6x10 -7

2.2x10 -6

3.9x10 -6

0.995

3.5x10 -r

1.4xlO -_

2.5x10 -7

7x10 -s

2.8x10 -r

4.9x10 -r

2.8x10 -r

l.lxlO -6

2xlO -6

Table 3.8. Probability of Failure Due to hnperfect Pre-launch Diagnostics
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processingsite unreliability to exceed1 x 10-s. It is concluded that tile pre-launch

diagnostic coverage needs to exceed 0.95. If tile pre-launch interval is closer to 200

hours, the coverage needs to be closer to 0.99.

Table 3.9 gives the conditional probability that a processing site fails during the

launch phase given that the quadruplex degraded to a triplex during the pre-launch

interval and experienced two failures during launch. The duplex coverage is

assumed to be 0.5 and the transient failure rate is assumed to be 10 times the

permanent failure rate. Only the 200 hour pre-launch and permanent ground fixed

failure rate of 5 x 10-4/hour approaches an unreliability of 1 x 10-s.

Channel Failure Rate

(Ground Fixed)/hr

5xlO-s

10-4

5xlO -4

Pre-launch Time !hrs)
25

1.7xlO -9

1.4xlO -s

1.7x10 -s

5O

3.4x10 -9

6.7x10 -s

3.2x10 -6

200

1.2xlO -s

9.6x10 -s

8.3xI0 _8

Table 3.9. Probability of Launch Failure For a Quad Degraded to Triplex During

Pre-launch (Duplex Coverage = 0.5)

Table 3.10 gives the probability of failure due to an uncovered first failure during

the launch phase for different values of coverage during the launch phase. Launch

coverages of 0.8 and 0.9 result in a processing site unreliability above the 1 x 10 -s

when the channel failure rate is 5 x 10-4/hour.

Triplex - A Markov model for a triplex architecture is illustrated in Figure 3.11.

This model includes fault occurrence and fault handling states for both permanent

and transient faults. The fault handling mechanisms are modeled simply as a

holding state which leads either to a recovered state or to system failure.

The states in this model can be represented by a vector

S=(N,T,P), where
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Pre-launchTime
(hrs)

25

5O

200

ChannelFailureRate
(Ground Fixed)/hr

5xlO-s

lxlO-4

5xlO-4

5xlO-s

lxlO-_

5xlO-4

5x10-s

lxl0 -4

5x10-4

0.8

2.7x10-7

l.lxl0 -6

2.6x10-s

2.7x10-7

1.1xl0-s

2.4x10-s

2.6x10-_

lxl0 -6

2x10-s

Launch (.'overage

0.9

1.4x10-_

5.5x10-7

1.3x 10-s

1.4xlO -7

5.5x10 -7

1.2xlO -s

1.3x10 -_

5x10 -7

lxl0 -s

0.95

7xlO-8

2.7x10 -7

6.5xI0-6

7x10 -8

2.7x10 -_

6x10 -6

6.5x10 -8

2.5x10 -7

5x10 -6

0.99

1.4x10 -s

5.5x10 -8

1.3x10 -6

1.4x10 -8

5.5x10 -s

1.2x10 -6

1.3x10 -s

5x10 -8

lxl0 -6

Table 3.10. Probability of Failure Due to Imperfect Coverage During Launch
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Figure 3.11. Triplex Launch Unreliability
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N = the numberof operational processors in tile state
T = 1 if a transient fault has occurred and

detectiou/isolation/recovery actions are in progress,

0 otherwise

P = 1 if a permanent fault has occurred and

detection/isolation/recovery actions are in progress,

0 otherwise

Transitions from one state to another in tim inodel are made according to tile

following rates and probabilities:

fl, p

ST

Pc

_t

Permanent processor failure rate

Transient processor failure rate

Probability that a fault is detected, isolated,

and the failed processor switched out

Rate at which a fault is detected, isolated,

and the failed processor switched out

Rate at which a processor failed due
to a transient fault is recovered

The states in this model are described in the following table:

State Number State Vector Description

(3,0,0)

(3,0,1)

(3,i ,0)

0,0,o)

(2,0,0)

(o,0,o)

3 operathtg processors
No faults

3 operath_g processors

1 permanent fatdt

FD[R hi progress

3 operath_g processors
1 traitsient fault

FDIR ill progress

2 operating processors
No faults

2 operathtg processor
No faults

1 operating processor

Loss of system

The reconunended configuration for the General Dynanfics architecture is a triplex.

Assuming that the pre-launch diagnostics are perfect, the system can start the

launch phase undergraded. Under this assumption the unreliability of a triplex

configuration was examined for different launch fault coverages, different channel

failure rates and different transient failure rates. Table 3.11 gives the approximate

probability of failure for various channel failure rates for a triplex experiencing two
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f

failures during the launch phase, the second of which results in an uncovered duplex

failure. Depending upon the transient failure rate scale factor, a triplex whose

channel failure rates exceed 5 x 10-4/hour or 1 x 10-Z/hour will not meet 1 x 10 -s

unreliability requirement for a 10 minute launch phase.

Transient

Factor

10

Channel Failure Rate/hour

(Ground Fixed)

10-4

5x10 -4

lO-a

10-4

5x10 -4

10 -3

Duplex Coverage

0.5

lxl0 -r

2.5x10 -s

lxl0 -s

1.4x10 -_

3.5x10 -s

1.4x10-*

0.8

4xlO -s

lxlO -6

4xlO -8

5.5x10 -r

1.4x10 -s

5.6x10 -s

Table 3.11. Triplex Launch Unreliability

Multiple Core Processing Sites (Launch Phase) - Using the channel failure

rates given in Figure 3.2, the reliability of a single processing site can be

determined. If the General Dynamics self-checking pair (SCP) is spared in each

channel, the model for the spared SCP must be used for the processor element.

Since multiple processing sites are needed for MPRAS applications, the reliability of

a network of processing sites is needed. Deternfination of multiple site reliability

depends upon the techniques used to interconnect the sites. For certain designs, the

interconnection mechanism can be treated as an N modular redundant component

whose failure probability contributes to system failure as an independent component

and each processing site can be treated as independent N modular redundant

components. At the other extreme, the interconnection is such that the channel

failure rates for each processing site and for one interconnect channel must be

combined to give a composite channel failure rate. This connection scheme will be

referred to as direct connection in this discussion. Analysis of systems which do not
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fit either of these categories is often difficult due to the fact that events leading to

failure are not always independent and mutually exclusive.

Tile analyses presented by Boeing ill their MPRAS Fourth Quarterly Review

assumed that the interconnection scheme is a quad modular bus whose failure can

be treated independeutly. Their justification for this assumption is based on the use

of a switching bus interface unit (BIU) to provide processing site access to the quad

redundant busses. The derivation of General Dynamics MPRAS dependability

goals, as presented in MPRAS Reference Vehicle Requirements, implies that the

multiple processing sites are interconnected such that the core processing can be

treated as a composite multistring system. That is, the channel failure rates for all

sites call be added to give a composite channel failure rate. This implies that

processing channels for each site are directly connected to a bus and that no

cross-channel voting or bus switching is employed.

The AIPS interconnection provides for redundant connection layers or channels with

voting or selection of data received on each layer. Processing channels can only

transnfit on one layer. Analyses which simplify and bound the reliability of this

type interconnection have been presented.

If the direct connection of processing site channels without cross-channel voting or

selection is assumed for the General Dynamics architecture, the processing site

channel failure rates for all critical sites which are interdependent should be

combined and used as the channel failure rate for the composite redundant system.

Depending upon the assumption for the transient failure rate, a triplex which is the

reconunended configuration for the General Dynamics architecture will not meet a

10 nfinute launch unreliability goal of 1 x 10 -s when the composite ground fixed

channel failure rate exceeds either 2 x 10-4/hour for a transient rate factor of 10 or

10-3/hour for a transient rate factor of 2.

If M identical processing sites are required, the channel failure rate for each site

must not exceed _th of these composite rates. If the estimated failure rate for a

processing channel without a spare SCP given for General Dynamics in Figure 3.2 is

used, the number of processing sites will be limited to between 2 and 10 depending

upon the transient nmltiplying factor. Once again the reliability sensitivity to the

transient multiplying factor and the need to better quantify this factor is apparent.

Use of a spare SCP in each site processing channel would approximately double the

number of processing sites that could be supported.

For the direct connection approach, the probability of system failure for highly

reliable systems tends to be proportional to M 2 for a triplex and M s for a

quadruplex.

Assuming that the interconnection allows each site and the interconnection
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mechanismto fail independentlyasN modular redundantelementsand that all
processingsitesare identical, the probability of systemfailure is given by:

where"

Psr = 1- (1 - P,)(l - G) M, (3.17)

PsF = Probability of system failure

Pl = Probability that interconnection fails

Pv = Probability that a processing site fails

M = Number of processing sites

Assuming that the interconnection failure probability is much smaller than the site

probability of failure, the probability of system failure is approximated by:

PSF --_ 1 -- (1 -- pp)M. (3.18)

If Pp is also small, the expression can be approximated by:

M!

PSF _-- MPp 2(M - 2)! P_" (3.19)

The probability of system failure for M triplex processing sites connected in this

manner, under the assumptions that PI << Pp and Pp is small, is proportional to M

and would be a factor of M smaller than the direct connect case. For a quadruplex,

it is a factor of M 2 smaller. From the reliability standpoint, architectures whose

interconnection mechanisms support these latter assumptions can be more readily

scaled to larger configurations (increased M) than can the direct interconnect

architectures. The practical limit of this approach is the point where the

unreliability of the fault-tolerant interconnection due to the voters, switches and

other components is no longer much smaller than the processing site unreliability.

For a given interconnect failure rate, this places a lower limit on the processing site

reliability beyond which system reliability will not improve.

Analyses reported for both the Boeing and AIPS architectures indicate that their

proposed interconnection reliability will be better than the reliability of a processing

site.

Sparing for interconnection architectures of this type takes the form of additional

processing sites which may be substituted for any failed site. The Boeing

architecture has provision for this type sparing. The structure of the Boeing

transducer and flight control networks permit this to be accomplished by simply

activating the spare processor.

Supporting sparing in this manner is within the capability of the AIPS architecture

building blocks. However, switching in a single spare so that the sensor/actuator
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Table3.12. Modelsfor Probability that MaintenanceWill be RequiredPrior to
Launch

Redundancy

Triplex

Quadruplex

Direct

3MAt

6(MAt) 2

,SiteIntercounection

Independent

3MAt[1 3- 7(M - 1)At]

6M(At2)[1 - 9(M - 1)(At)2]

I/O networkor networksfor all processingsites in an AIPS configurationcan be
serviced,may not be costeffective. The needfor, or methodof, sparingfor MPRAS
applicationshasnot beenproposedfor AIPS at this point.

It is feasiblethat both quadruplexand triplex configurationscomposedof several
processingsitescanmeetthe missionreliability requirements.Interconnection
mechanismswhich providefor voting or bus selection are superior and more scalable

than direct connection methods. While General Dynanfics has indicated in some

documents that a direct connect, composite, multi-channel system is their

reconm_ended configuration, some documents also indicate that processing sites can

vote data passed between sites. It is not clear which option is reconmlended.

Multiple Processing Sites (Prelaunch) - For triplex processing sites, a failure

of a redundant channel in any processing site is sufficient to require maintenance

prior to launch. Similarly, two redundant channel failures in any processing site is

sufficient to require maintenance for a quadruplex configuration. Table 3.12 gives

models that approximate the probability of maintenance for triplex and quadruplex

configurations using both direct and independent interconnection of processing sites.

Equation 3.19 was used for the independent interconnection configuration.

By varying A, M, and t over the ranges of interest, the probability that maintenance

with be required can be determined. With A = 1 x 10-4/hour, which is

approximately the permanent failure rate of a processing channel in each
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architecture;the probability that maintenancewill be requiredfor a triplex ranges
from 7.5 x 10-3 to 6 × l0 -1 for triplex redundance,1< M < 10, and 25 hrs < t <

200 hrs. Even for the most favorable parameters, the probability that maiutenaace

will be required could be unacceptably high

For the same parameter ranges, the directly interconnected quadruplex probability

of maintenance ranges from 3.8 x l0 -s to 2.4 x l0 -1 and varies as M'_t "_. If t = 200

hrs. and M --- 2, the probability of required maintenance would be 0.01. The

independently interconnected quadruplex probability varies as Mt "_and ranges from

3.8 x l0 -s to 2.3 × l0 -'2. A 0.01 probability results when t = 200 hrs and M = 4.

3.4. Acquisition Network Reliability

The hardware modules required to support the sensor/actuator communications

function in MPRAS applications represent one half or more of the total hardware

requirements. It is also the case that to date no reliability analyses of the

acquisition networks have been reported by the MPRAS contractors. Based on this,

it was decided that this area of design should be examined more closely.

Accordingly, the reliability characteristics of this function were assessed for each

architecture. Given the early design stages of the MPRAS architecture, the lack of

specific application details and the breadth of MPRAS applications, a hypothetical

sensor data acquisition problem was synthesized. The characteristic of this

hypothetical application is simplicity and its purpose is to examine general issues

related to the reliability of proposed architectures.

The only reasonably complete description of the sensors and actuators for a vehicle

was provided by General Dynamics in the MPRAS Reference Vehicle Requirements.

This document details a representative set of sensors for what would be considered

to be a demanding application for MPRAS. The application incorporates adaptive

GN&C, advanced telemetry processing, integrated Health Monitoring, and Fluids

Management, as well as propulsion control and other typical avionics functions.

From this representative application it can be concluded that flight-critical sensors

and actuators of mixed redundancy will be distributed throughout the entire

vehicle. Upwards of 3000 transducers are identified for the core and booster.

Based on the characteristics of the reference vehicle requirements, a simple sensor

acquisition problem was defined. This hypothetical application was then used to

exantine the reliability characteristics of the candidate MPRAS architectures. In

this application it was assumed that sensors are grouped into N sections of the

vehicle and that all sensors have the same redundancy.

Figure 3.12 shows an acquisition network to collect the sensor data. Sensor interface
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units collect data from a setof sensors.Multiple bussesdeliver redundant sensor
data to central computingresources.This network haslocalvoting planes
associatedwith eachsensorgroup. Thus, if properly implemented,consistentsensor
data canbeprovided. The network is representativeof the architectureproposedby
GeneralDynamics.

Figure :1.13showsa network which is representativeof that proposedby Boeing
Aerospace.This architecturehasa central voting plane. It is alsopresumedto be
tile preferredconfigurationfor the AIPS architecture,althoughboth configurations
shouldbe feasiblewith AIPS building blocks.

Considerthe localvoter network shownin Figure 3.12.The network is shownas
triply redundant,but the quad-redundantcasewill alsobe considered.Assumethat
tile failure to deliverat least2 redundantinputs from anysensorgroup is sufficient
to causesystemfailure. Within a sensorgroup, lossof 2 sensorinterfacesfor a
triplex or 3 sensorinterfacesfor a quadruplexconfigurationresultsin systemfailure.
The lossof a sufficientnumberof bussesor the lossof anyvoting planewill also
result in failure. Tile sensorinterfacewill be taken to beany componentwhich
deliverssensordata to the voter. It is assumedthat the voteroutputs arecoupled
moreor lessdirectly to tile bus. A bus link will be lost if a babblingbus transmitter
cannot bedisabled,if busconnectionsfail, or if the destinationreceiverand bus
interfacefail. Assumingthat all sensorgroup interfaceshave the same failure rate

and that all voter channels have the same failure rate, the probability that a local

voting triplex system is operational is given by:

PsG = (1 ' 2 2pa)N [1-- 3Pa,, 2pa]N [(1--3P_ + + p_)Z+3PB(l_pB).a[l+lpN]]

(:}.20)

where: P. = Probability that a voter channel fails,

P_ = Probability that a sensor group channel fails,

Ps = Probability that a bus channel fails,

N = Number of sensor groups.

The left most factor of this equation is the probability that at least 2 of the 3 voter

channels are functional. Since there are N such components, this factor appears to

the Nth power. Similarly, the second factor represents that at least 2 out of 3 sensor

interface channels within a group are functional. Again, this factor appears to the

Nth power. The third factor is similar to the probability that two or more of three

bus channels are operational, that is,

[(1- PB) 3 + 3Ps(1- p.)2] (3.21)

However, it differs due to combinations of bus channel failures and voter failures.

This factor will be referred to as an "adjusted" bus reliability factor. Similarly, the
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probability that a local voting quadrup]exsystemis operationalis givenby:

P,,.G 3 4 N a, 4 N r [I +21:'.] N

= (1-4P_+3P,]) [{1-PB)4+4PI_(I-PB)a[I+2Pv+3P2v] N +6/-'_(1-pB) 2
. (I-4P_ +3P,_ )

(z..r2)

Here, the third factor is similar to the probability that two or more of four bus

channels are operational, that is,

[(1 - PB) 4 + 4PB(1 -- PB) 3 + 6P_(1 - Ps) 2] (3.23)

Consider the central voting architecture shown in Figure 3.13. Sensor interfaces are

directly coupled to the bus associated with a given redundant channel. The sensor

interface is likely to be less complex than that for the previous illustrated

architecture since it does not have to drive a dedicated local voter. Bus failures can

be taken to be the failure of bus connectors, uncontrollable failure of bus drivers at

the sensor interface and the failure of the destination receiver and all support

Components which deliver bus data to the central voting plane. The reliability of a

central voter triplex system is given by:

[
PsG (1 3P: + 2P2)(1 • [= - - 3P_, + 2P'2) N (1 - PB) 3 + 3(1 - PB)2PB

The reliability of a central voter quadruplex system is given by:

(3.24)

r

Psa (l_4Pv3+3pv4)(l _ 4 N ]-4P_+3P_) (1 - PB)_
L

D + 2P_]_ + sP_0 - Ps)_ I ]+ 4(I - PB)sPB [I+ 2P_ + 3P_] Iv [I4"2P_ + 312] N
.J

(3,'2s)

The form of these equations is sinfilar to that of equations 3.20 and 3.22 in that

they contain factors for the voter, the sensor interface and the bus. However, the

voter factor is not to the Nth power and the bus factor is not the same as that for

the local voting configuration. While the "adjusted" bus reliability factor is written

in a form that is similar to that of the local case, it contains factors that depend on

the sensor interface failure probability. This is due to the fact that without the

intervening local voter, the loss of sensor interface units and bus channels are no

longer independent.

If the probability of sensor interface unit failure is one-.half, the terms in the bus

factor which depend on the sensor interface unreliability (P_) become (_)N for a

triplex and (s)N and (_)N respectively for the quadruplex, ff N or P,, is increased,
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the factor tends to degenerate further from that of the independent redundant bus

factor and tends to be influenced more by the all-busses' operational term

(1 - pB)A

A qualitative comparison of the two types of architectures suggests the potential for

trade-offs between voter costs and system reliability. In the local voter case, the

voter reliability factor appears to the Nth power, whereas this factor only appears

once in tile central voter case. For equivalent voter failure rates, this factor favors

the central voting for reliability. Since the local voters do not require tile higher

throughput of tile central voter, the potential exists for these voters to be less

complex, which in turn could result in a local voter that has a lower failure rate

than the central voter. The effect of this term would be weak.

If the local voter is designed so its failure rate is smaller than the sensor interface

unit failure rate, tile "adjusted" bus reliability factors the local voting architecture.

Tables 3.13, 3.14, and 3.15 detail, for tile proposed architectures, the hardware

modules and associated failure rates which are allocated to the model parameters

&, &, andPs.

For the Boeing architecture, Local Signal Conditioners are allocated to tile sensor

interface component. The central voter includes tile Fault Tolerance module, the

Processor module and a Power Supply module. The modules that are associated

with bus channels include an I/O channel unit, the bus interface at the processing

site and other components such as bus connectors, links, and uncontrollable failures

of bus receiver/transnfitter units.

The General Dynamics architecture provides for a sensor interface module that is

part of a Remote Data Interface (RDI). Support for sensor interface modules is

provided by the RDI. Consequently, these modules are assumed to fail at about

one-half the rate associated with the Boeing Local Signal Conditioner. A bus

chamml is allocated the HSDB module at the receive end of the data collection bus.

Other parts of the bus that can fail are connectors, links, and uncontrollable bus

receiver/transmitter failures. Note also that the voter failure rate is not less than
the sensor interface unit failure rate.

At this point, it is appropriate to discuss an additional feature of the General

Dynamics architecture. If the number of sensors within each section of the vehicle is

increased beyond the number that can be handled by a single sensor interface

module in each RDI, additional sensor interface modules can be incorporated into

the RDI's, and the RDI's become regional voters rather than dedicated local voters.

The additional sensor interface modules can be added with less failure rate penalty
than that for additional sensors in the central architectures. For the central

architectures, N would double if the number of sensors in the vehicle doubled. For
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Configuration: Central (Quad Recommended)

Associated

Model Parameter

Sensor I/F Channel

(e.)

Bus Channel

(Ps)

Voter

Hardware Module

Local Signal Conditioner

@ 2.6 x lO-S/hr

I/O channel:

HSDB I/F ¢) 2 x 10-S/hr

1773 I/F @ 1.8 x 10-S/hr

P.S. @ 8 x 10-6/hr

Processing Site:

HSDB 1/F @ 2 x 10-S/hr
Other: N Links

Connectors @ N x 5 x 10-r/hr

Rec/Tx Babble

Processing Site:

Processor C@2.4 x 10-S/hr

F.T. Module @ 2.4 x 10-S/hr

P.S. (@ 8 x 10-6/hr

Total

Failure Rate

(Ground Fixed)

2.6 x 10-S/hr

6.6 x 10-S/hr

5.6 x lO-5/hr

Table 3.13. Boeing Sensor Network
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Configuration: Local (Triplex Recommended)

Associated

Model Parameter

Sensor I/F Channel

(p,,)

Bus Channel

Voter

Hardware Module

Sensor I/F

I@ 1.5 x lO-S/hr

Processing Site:

HSDB I/F _ 2 x 10-S/hr
Other: N Links

Connectors @ N x 5 x 10-r/hr

Rec/Tx Babble

(Has spare bus for each channel)

RDI:

Processor w/o spare @ 6 x 10-S/hr

w spare

Local Data Link @ 2.4 x 10-S/hr

P.S. _ 8 x 10-6/hr

RDI:

HSDB I/F @ 2 x lO-S/hr

Total

Failure Rate

(Ground Fixed)

1.5 x lO-S/hr

2 x lO-S/hr

11.2 x lO-S/hr

or

5.3 x lO-S/hr

Table 3.14. General Dynamics Sensor Network
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Configuration: Central

Associated

Model Parameter

Sensor I/F Channel

(P,_)

Bus Channel

(PB)

Voter

Hardware Module

Device I/F unit

@ 2.6 x 10-S/hr

I/O Node

Pre-launch @ 2 x 10-S/hr

* launch _ 1 x lO-S/hr

I/O Network: N Nodes

Pre-launch: 1 C@2 x 10-S/hr

launch: N @ 1 x 10-S/hr

plus 1 @ 2 x 10-S/hr

Launch only

Connectors

Rec/Tx @ N x 10-_/hr
FTP:

IOS _- 2 x 10-S/hr

FTP Site:

Processor _ 3 x 10-S/hr

Shared HW (Voter) @ 2.5 x 10-S/hr

P.S. @ 8 x 10-6/hr

Total

Failure Rate

(Ground Fixed)

Pre-launch

4.6 x 10-S/hr

L&ullch

3.6 x 10-S/hr

Pre-launch

4 x 10-S/hr
Launch

(4 + N) x 10-S/hr
Nodeless

2 x 10-S/hr

6.3 x lO-5/hr

Table 3.15. AIPS Sensor Network
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tile (;eneral Dynamics modularity, tile number voting planes could remain the same,

and tile number of sensor interface modules would double. In equations ;3.20 and

:3.22, tile N in tile voter factor a11d in tlle adjusted bus factor would be replaced by

an integer equal to the number of voting l)]anes and tile unreliability of tile sensor

interface, [½ would be itlcreased.

The AIPS architecture has a Device interface Unit for sensor inputs. Since tile

AIPS I/O network is reconfigurable during tile pre-launch period, I/O Nodes which

facilitate reconfiguration will be combined with the DIU for failure purposes. That

is, if an I/O Node fails prior to launch, only the associated DIU and its sensor

complement are lost. During launch, tile loss of an I/O Node could result in loss of

tile bus. It was assumed that one-half of the total I/O Node failure rate could result

in failures that cause loss of the I/O network if reconfiguration was not allowed.

This part of tile node failure rate is allocated to the bus channel. The remaining

I/O Node failure rate is allocated to the DIU.

Both during and prior to launch, the failure of the I/O Node at tile receive end of

this network and the I/0 Sequencer in tlle destination FTP can in effect cause the

loss of the bus channel. Prior to launch, multiple failures of connectors, links and

bus Receiver/Transmitters are required to cause the loss of the bus. Otherwise, I/O

network reconfiguration can configure around these sources of bus failure. The

failure rate of FTP channel components where central voting occurs is allocated to

the voter failure parameters of the central model.

Tile probability of system failure for various mission times was determined for

various architecture configurations. Selected results are given in Table 3.16. The

N=4 cases are equivalent to 30 quad-redundant or triple-redundant sensors in each

of four sections of the vehicle or 120 multiple redundant sensor sets. Tlle N=8 and

N=12 cases are equivalent to 240 and 360 multiple redundant sensor sets,

respectively. Results are given for General Dynanfics in their recommended triplex

configuration. Both regional and local voter, and single self-checking and spared

self-checking processor cases are given. Quadruplex configurations for Boeing, AIPS,

and General Dynamics are also given. The Boeing quadruplex and the AIPS

quadruplex with switched I/O nodes produce essentially the same results. The

AIPS quadruplex without switched I/O nodes and the General Dynanlics

quadruplex with spared SCPs give the most favorable results. The reliability for the

General Dynamics architectures which use regional voter configurations does not

vary significantly with the number of sensors. This is an indication that the

reliability is dominated by the unreliability of the voter module.

If the powered pre-launch period is 200 hours, none of these configurations will meet

a 10 -s unreliability goal. Some will meet a 10 -4 unreliability goal. The triplex

configuration will not meet a 10-3 goal. If the powered pre-launch period is limited
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to 25 hours, most configurations except the triplex will mt_t a 10 -s unreliability

goal. Note that tile recotmnended (;eneral Dynamics triplex configuration with

spare self-chocking processors requires 50% more processor modules than the

quadruplex w-rsions of other architectures and does not perform as well. Note also

that for the Boeing and AIPS architecture, tile central voter can be spared. This

approach would improve the probability associated with the bus components such

as the Boeing HSDB interface and the AIPS Input/Output Sequencer. As a result

the reliability of these architectures could be further improved.

While the particular configuration analyzed contains simplifying assumptions which

may not be completely applicable to particular MPRAS applications, it is

sufficiently representative that the results should be of concern. The topology of the

networks match those proposed both by Boeing and General Dynamics and the

complexity or sizes considered are well within MPRAS requirements. Since the

resulting reliabilities are near or fall short of mission reliability requirements, the

design of the acquisition network sbo,dd be examined much more closely. This is

particularly true for triplex configurations. If well-designed, the local voting

approach can exhibit better reliability, scalability and performance characteristics.

3.5. Testability

Testability is the ability of an item to undergo valid, dependable functional testing

and associated fault detection/isolation, within constraints of elapsed time,

complexity of access, support equipment and functional procedures, and within set

limits of manpower, material and other resources.

Testability underlies reliability, fault tolerance, maintainability, availability and

productivity. For the ALS, MPRAS testability is a key factor which enables cost

savings. The costs associated with test and maintenance for the current launch

system are significant. These include the cost of extensive checkout at all stages of

vehicle integration and the cost of support personnel and equipment to respond to

failure prior to launch. Testability can reduce the cost of building a system. The

cost of reworking a system due to an undetected fault at a particular assembly stage

increases as assembly proceeds past that point, hnproved testability at all assembly

stages reduces both the frequency of reworks and the extent that assembly can

proceed before a fault is finally detected.

The increased complexity of MPRAS avionics increase testing requirements

substantially beyond that required for current launch vehicle avionics. With the

large number of components in the system, it is reasonably certain that there will be

several component failures during the pre-launch period, hnproved testability
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results in better fault isolation and improvedmean-time-to-repair.More
importantly, improvedfault diagnosisreducesthe probability that the vehiclewill
be launchedwhenthe avionicsis in a degradedstate that could jeopardizea
successfullaunch. Hence,missionreliability canbe improved.

Testability featuresfor eacharchitecturewerereviewedto deternfineif they had
beenincorporatedinto the designto the extent appropriatefor the concept,
requirementsand early designstagesand to determineif testability requirements
areconsistentwith the systemmaintainability, reliability, availability and fault
toleranceobjectives.

The testabifity goals/requirementsdefinedat this stagein MPRAS should include,
but not be limited to, the following subjects:

1. requirementfor status monitoring.

2. definition of the failure modesspecifiedto be the basisfor test design.

3. requirementfor failure detei:tion(failure coverage,failure latency) usingfull
test resources.

4. requirementfor failure detectionusingbuilt-in test resources.

5. requirementfor failure detectionusingonly passivemonitoring.

6. requirementfor limiting falsealarm rate.

7. requirementfor failure localization to a subsystem/equipmentusing built-in
test.

8. requirementfor failure isolation to one or more number of modules using

built-in test. The requirement may be expressed in terms of percentage of

modules in a subsystem/equipment.

9. requirement for failure localization/isolation times.

10. restrictions on built-in test resources in terms of hardware size, weight and

power, memory size and test time.

11. requirement for BIT hardware reliability.

12. BIT MTBF.

13. allowable down time.

14. percentage of false alarms.

72



15. meanfault detectiontime.

16. meanBIT running time and frequency.

17. maintenance skill levels.

18. system modularity.

19. test point isolation.

20. number of maintenance points and access.

21. test equipment and access.

The General Dynamics requirements establish goals for the MTTR, for fault

detection and for fault isolation. Testing which supports assembly, integration and

pre-flight checkout is composed of tests that are directed toward several levels of

hierarchy. These include chip level, module level, subsystem level and system level.

These tests are to be used in a manner that reduces the time required to test the

overall system but maintain a high level of fault detection. The hierarchical

breakdown reduces the testing required for complex systems.

Chip level testing is directed toward complex VLSI functions and relies upon on-chip

built-in-test (BIT). For complex VLSI functions, BIT is often the only practical way

to deternfine that a chip is fault free with a high level of confidence. Module level

testing is directed toward line replaceable modules and will rely upon both on-line

and off-line self-testing as well as error detection mechanisms. For example, the

processor/memory proposed is to implement a self-checking pair. Module testing

and error reporting is to be supported by the test and maintenance bus interface

provided to each module. System level testing is supported by a health maintenance

controller. This controller receives health and status reports from modules and

subsystem, monitors module/subsystem self-test functions, controls system

configuration for test and diagnostics, provides diagnostic capability for subsystem

interconnections, monitors system communications for errors, inserts data to check

error detection lnechanisms and directs, monitors and diagnoses system level tests.

Independent communication will be provided to each channel of the redundant

paths to maintain isolation capability. Standard test interfaces are specified.

(Jonsider the test and maintenance hardware for a triplex system which has ten

engine controllers, 5 remote data units, a vehicle management processor and a

guidance and navigation processor. There will be 3 system test and maintenance

modules (STM) in each of these or 17x3=51 STM modules. Assmne the failure rate

for these modules in a ground fixed environment is 2xl0_/hr. Also, assume that the
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test related hardware on each module in the system represents about 20% of tile

module complexity. If tile average module failure rate is 2.5xl0-S/hr, tile failure

rate of the related test and maintenance components is 5xl0-6/hr. Tile combined

failure rate for the test and maintenance hardware in a 200 lnodule system is

200x5x10 -6 + 51x2x10 -s -_ 10-a/hr. For 25-200 hours of pre-launch operation, tile

probability of a failure in tile test and maintenance hardware ranges between 0.025

and 0.18. Since there is a significant chance that test and maintenance hardware

can fail in pre-launch operations and since the desired probability of not detecting a

system fault is somewhat lower than the chance of test failure, tile reliability and

testability of the test and maintenance hardware appears to be a risk area for the

MPRAS design.

In addition to the self-checking pair; the use of memory error detection and

correction, comnaunications error detection and correction, voting and software

diagnostics to flush out latent faults are suggested for in-flight operation. Tile

specifics of these mechanisms are not defined.

Tile Boeing health monitoring and BIT supports self-test, monitoring, readiness

evaluation for launch, maintenance and assembly operations. Health monitoring is

organized into a hierarchy of levels which are:

• Vehicle Level

• Stage Level (e.g., core or booster)

• Module Level (e.g., P/A module, payload)

• Subsystem Level (e.g., propulsion processing)

• Component Level (e.g., computer enclosure)

• Subcomponent Level (e.g., circuit board)

• Part Level (e.g., integrated circuit or sensor)

Tests for each level include internal self-test with isolation from assemblies of same

or higher levels, external interconnect test with assemblies of same or higher level

and external test of the assembly with BIT of higher assembly level.

The Boeing functional specifications call for an advanced, comprehensive, thorough

health monitoring and BIT system. The philosophy, constraints, goals and

guidelines for the design of this function have been laid out for the core processing

as well as for the sensor/effector elements. Extensive descriptions of the

sensor/effector failure modes and tests have been developed. Standard test
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interfaces are specified and each electronics enclosure will have an external test

connector which will provide access to tile test and mailltenance port.

Ou-line error detecting requirements for the Boeing architecture call for error

detection and correction of memory data and communications data, scrubbing of

memories, and on-line diagnostics. Specific techniques and details for these

mechanisms were not specified.

Extensive test and error detection mechanisms have been implemented for the AIPS

proof-of-concept system. These include an on-line self-test diagnostic designed to

uncover latent faults in the voter and error reporting circuits, data memory, program

memory and the real-time clock. A presence test is run every processing frame prior

to application processing to establish which members of a fault masking group are

available. Processor exception errors that are cletected include bus errors, address

errors, illegal instruction errors, spurious interrupts and arithmetic traps. A watch

dog timer is used to detect processors that fail to complete operation sequences.

The intercomputer and input/output networks detect protocol errors, data errors

and time outs. Voters are used to mask errors on intercomputer communications. A

test port provides host controller access to the shared bus of the FTP. The extensive

BIT that is being used for modern complex VLSI devices and the extensive BIT

mechanisms needed to support thorough high coverage assembly and pre-launch

testing of MPRAS avionics, including the sensor/effector acquisition distribution

hardware is not ilnplemented in the AIPS proof-of-concept. The extent to which

these concepts will be proposed for MPRAS was not available for this evaluation.

Both the Boeing and General Dynamics testability and maintenance functionality

and design guidelines are appropriate for the mission requirements and the stage of

development. The status of the Boeing test-related requirements are at a more

advanced stage than that for General Dynamics.

The BIT, self-test features and test interfaces which support assembly and

pre-launch checkout for AIPS in an MPRAS application are not fully defined. The

A IPS FTP and communications network self-test and error detection mechanisms

which are appropriate for the in-flight and on-pad phases have been implemented

and tested in the proof-of-concept system. Only the intention to use self-test

diagnostics and error detection techniques have been declared for the Boeing and

General Dynamics architectures. Which techniques and at what places in the

architecture they are to be employed has not been detailed for either architecture.

None of the architecture design information adequately addresses the reliability of

the BIT and related test support hardware. At least for the Boeing and General

Dynamics cases, the estimated failure rate for this is sufficient to be recognized as a

risk area requiring closer attention. Not enough is known about the AIPS to
determine if there is reason for concern.
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4. PERFORMANCE EVALUATION

4.1. Introduction

The l)rimary objective of tile performance evaluation was to determine if the

proposed M PRAS architectures are capable of handling the processing workloads

projected for ALS avionics as expressed ill baseline requirements. Ill addition,

characteristics such as sensitivities to architecture parameters and workloads were

considered. The evaluation takes into account tlle performance of the

sensor/actuator data acquisition/distribution architecture as well as the basic

computing resource architecture.

These performance analyses provide for the identification of strengths and

weaknesses of each architecture, identification of serious design deficiencies,

identification of potential development risks and critical design areas, and

identification of significant differences ill the designs assessed. The basis for a

comprehensive performance evaluation includes specifications of hardware building

blocks and their associated characteristics, specifications of software operating

system characteristics, specifications of fault tolerance mechanisms and ttle

specification of the application characteristics.

With a few exceptions, the hardware building blocks for each of the architectures

have been adequately specified. The functionality and performance characteristics

of the hardware fault tolerance mechanisms in the General Dynamics and Boeing

architectures have not been specified sufficiently to either qualitatively or

quantitatively evaluate their impact on architecture performance. Moreover, they

are not sufficiently specified to assess their adequacy to support the overall fault

tolerance of the architectures. For all architectures, the specification of the

sensor/actuator interface is not as complete as desired. The least complete is that

for the Draper Device Interface Unit.

The information of interest regarding system software architecture includes a

description of control characteristics such as distributed, central or hierarchical, and

descriptions of functions including task scheduling, I/O services, interrupt services,

memory management, utilities, interprocessor communications services and

functions related to fault tolerance. In addition, performance information such as

function overheads, context switching time, expected execution time for a given

system function, function response times and uncertainty in response times is of

interest. The operating system software for the Draper architecture has been

designed, developed and documented for a proof-of-concept system. Performance

characteristics such as context switching time, fault detection isolation and recovery
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parameters,and certain l/O networkserviceparametershavebeenmeasuredand
reported. Not reportedto dateare measurementsfor IC and l/O networkmessage
delivery times. Dueto the early designstageof the Boeingand GeneralDynamics
MPRAS architectures,specificationof their operating systemsdesignand
characteristicsis minimal.

An application specificationwhichcontainedbaselinerequirementsand provided a
fimctional decompositionwasrequested.For eachsubfunction,a descriptionof the
inputs, processing,outputs and specialrequirementssuchastransport delay,jitter
and processupdate rate is necessary.Subfunctionsshouldbe brokendowninto
tasksand the executionsequencefor thesetasksshould bespecified.Processing
workloadin terms of instructionsper processupdate and information flow between
subfunctionsshould becharacterized.The basisfor the workloadestimateswas
requested.

A good computational modelspecificationfor distributed real-time systemsis
essentialfor the designof suchsystems.To beconsistentwith "concurrent
engin_ring" principles,goodengineeringpractice and a methodologyfor the design
of dependablesystems,the SDIO BM/C 3 Processorand Algorithm Working Group
has recommendedthat this modelbe createdand deliveredat the earliest milestone,
the SystemRequirementsReview(SRR). (Applicable documentsa, b, and c.)
Specificationand modelingof the computationsin an application is the starting
point for the designand evaluationof computingsystems.From suchspecifications
and models,the workloadsassociatedwith the application can becharacterizedby
temporal behavior andby function or subfunctionwithin an application.

In the past, computationalmodelsfor systemsconsistedof estimatesof various
parameterssuchasprocessingthroughput, input/output data rates,and memory
accesses.Theseestimateswereoften basedon coarse(low-fidelity) information
which wasscaledup to provideadequatesafetymargins. While theserequirements
wereoften brokendownby application subfunctionthey seldomprovidedany
information regardingtemporalcharacteristicsof the workloads.Averageworkloads
do not accountfor peakingfactorsdue to multiple rate groupsand transport delay
requirementspresentin a complexreal-time control system. Furthermore,average
valuesarenot adequateif a function's workloadis too largeto be implementedon a
singleprocessor.

While past practice is at best marginally adequatefor a real-time system,it is
unacceptablefor complexreal-timedistributed systems.If an applicationworkload
must be distributed acrossprocessingresources,allowabledecompositionstrategies
must be specifiedfor the application. Furthermore,the conununicationsworkload
generatedby eachdecompositionstrategy must becharacterized.Forcomplex
real-time applications, the deadlinesassociatedwith different processesin an
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application can leadto variations ill workloadover time. In addition, specific
decompositionsof the workload to resideon tile distributed computing resources
call dictate tile sp_ific designof the fault detection,isolation and recovery
processesthat must beemployed.

Tables4.l, 4.2, and 4.3 summarizethe computational resourcerequirementsderived
for MPRAS applicationsby eachof threeaerospacecompanies.TILe bases for these

resource estimates were not documented. Computational throughput requirements

are generally consistent at least to the degree of certainty expected in the early

system requirements stage. Exceptions to this observation are the areas of

propulsion control and telemetry processing (TT&C). There is at least a 10 to 1

discrepancy between the propulsion throughput requirements for the Martin

Marietta requirements and the Boeing and General Dynanfics requirements. This

difference is significant since it applies to every vehicle engine and can impact overall

requirements substantially. The proposed Boeing topology has a highly centralized

processing core which would not be feasible if the higher propulsion throughput is

required. At the very lea.st the Boeing topology would require a large number of

processing sites. This requirement should be clarified and resolved for future

MPRAS effort. The telemetry processing throughput for tile General Dynamics

requirements is substantially greater than that called out in the other requirements.

General Dynamics requirements provide for substantial data compression and

transnfission of vehicle data via telemetry down links to the ground.

The throughput for most functions is somewhat less than the 10 to 20 MIP

processing throughput projected for MPRAS processor modules. The Martin

Marietta propulsion throughput estimate of 10 MIPS, the General Dynamics

telemetry processing estimate of 9.4 MIPS and the Boeing adaptive guidance and

navigation processing estimate are exceptions. If any of these functions cannot

reside in a single processing module, decomposition of them will require

re-exanlination of systems communication estimates. The core processing

throughput requirements for the General Dynanlics computation model includes a

percentage for operating system overhead. Operating system overhead for real-time

systems with a range of sensor sampliug rates and control loop update rates is not

always well modeled by a percentage of the process computation throughput

requirements. An example is the task or context switching times which require a

constant number of instructions each time a task is invoked. For low frequency tasks

this overhead is much lower than for high frequency tasks. Of particular concern for

General Dynamics throughput estimates are the tasks that will be associated with

the sampling and processing of the acoustic and vibration sensors in the propulsion

instrumentation which must be sampled at 2kHz. These tasks must be invoked

every 1/2 millisecond. A context switch nmst be completed in significantly less than
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1/2 millisecond in order to maintain real-tinm processing.

Sensor/actuator l/O rates are l)roken out in tile Boeing and Martin Marietta

models. There is a 6 to 1 factor between these estimated I/O rates (6ml)ps vs

lmbps). Interfunction I/O rates for the (',eneral Dynamics and the Boeing

computation models differ by a factor of 4. These differences should also be resolw'd

before further MPRAS work proceeds. These differences are sufficient to render

certain of the proposed architectural topologies infeasible.

Appendix A contains hierarchical diagrams for the MPRAS application as described

by each aerospace compauy. The functional decompositions and relationships

between decomposed functions are provided in these diagrams.

FUNCTION

NAME

Propulsion

Uo RT
(kbps)

I.F. RT

(kbps)

THRPUT

(MIPS)

DATA MEM

(kB)

PGM MEM

(kB)

200 726 5.8 570 (4)

Fluids (1) (1) (1) (1) (4)
G&N 67 270 12.8 1350

67

560

(2)

380Control

852

(2)

.4

TT&C .1

(2)Communications

Range Safety

270
(4)

Ground Interfaces (2) (2) (2)

1 30 .003

(4)

215 (4)
(2) (4)

(2) (4)
3 (4)

Mission Mngmnt 0 280 .2 25 (4)

Health Monitoring 40 654 .4 2620

Instrumentation NA NA NA

Veh-Elem Interfaces (3) (3) (3)

Power 1 50 .2

(4)

(4)

Fault Tol Mngnmt (4) (4) (4) (4) (4)
Miscellaneous 5000

NA NA

(3) (3)
70

1012019.9936 3242TOTAL

(1) Included in Propulsion

(2) Included in TT&C

(3) Included in Control

(4) No Information

* Core Stage Requirements

Table 4.1. MPRAS Computational Resource Requirements- Boeing

The computational model does not provide task sequence information, does not give
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FUNCTION I/O RT I.F. RT THRPUT DATA MEM PCM MEM

NAME (kbps) (kbps) (MIPS) (kB) (kB)

Propulsion (3) 4400 6.6 (6) 20 20

Fluids (3) (7) .03 1 3

G&N (3) (7) 1.9 160 140

Control (3) 3200 3.2 25 100

TT&C (3) (7) 9.4 7 2

Conmmnications (1) (1) (1) (1) (1)

Ground Interfaces (:3) 4000 1 1 5

Range Safety (3) (7) .6 17 36

Mission Mngmnt (2) (2) (2) (2) (2)

Health Monitoring (3) (7) 9.8 3035 2254

Instrulnentation (5) (5) (5) (5) (5)

Veh-Elem Interfaces (5) (5) (5) (5) (5)

Power (3) (7) .1 5 5

Fault Tol Mngmnt (3) (7) (3) (3) (3)
2.7 7 2Miscellaneous (4)

TOTAL

(3) (7)
12800 35.3 3276 2567

(1) Included in Ground Interfaces

(2) Not a separate function for General Dynamics

(3) Included in I.F. Rate

(4) Data Recording Function

(5) Not called out for Point Design

(6) For 10 engines

(7) Relatively small values

* Point Design

Table 4.2. MPRAS Computational Resource Requirements - General Dynamics
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FUN(,TION I/O RT I.E. RT THRPUT DATA MEM PGM MEM

NAME (kbps) (kbps) (MIPS) (kB) (kB)

Propulsion 10 (1), 40 (1) 4600 (1)
Fluids NA NA NA NA NA

C&N (2) (2) (2) i2) (2)

(_Jontrol (2) ...... 185 4.32 164 9:30
TT&C 1:15 330 1650

Conmmnications NA NA NA NA NA

Ground Interfaces NA NA NA NA NA

Range Safety .004 660 2

Mission Mngmnt NA NA NA NA NA

Health Monitoring NA NA NA NA I_A

Instrunaentation 6240 .6 14 70

Veh- Elem Interfaces NA NA NA NA NA

Power .005 1 1
1

Fault 2"ol Mngmnt (2) (2) (2). (2) (2)

Miscellaneous (3) 60 6 34 7

TOTAL ll+10/ENG ,,, 1200 2600+4000/ENG

(1) Per Engine

(2) Includes CentrM Control, Staging Control, G&N and Redundancy Management

(3) Winds Ahead

Table 4.3. MPRAS Computational Resource Requirements - Martin-Marietta
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workload ill terms of instructions as opposed to MIPS, does not describe the basis

for tile model ill terms of computations being implemented, I/0 operations,

compiler assumptions, does not include what redundancy management operations

are performed, does not provide a temporal distribution of workload and does not

provide a sound basis for interfunction communications.

The function (control loop) update rates, latency and jitter have been specified for

each computational model. However, there is no specification for the degree of skew

allowed between samples taken from different sensors for the same time index. For

the fuel slosh or structural vibrations or bending measurements that could be used

in an adaptive control loop, it should be expected that a high degree of time

coherency would be required across spatially distributed sensors in order to best

learn and adapt for vehicle dynamic parameters. A time coherency specification

could impact the design for the control and synchronization of distributed sensor

sampling hardware.

It is strongly recommended that the MPRAS computation model be refined and the
areas where substantial differences exist between the three models described herein

be resolved before further MPRAS development proceeds.

A detailed audit of the sensors and actuators required to support the application

was requested. The audit should specify for each sensor/actuator the type, proposed

redundancy, number of each type, number of bits, source/destination subfunction

associated with tlle sensor/actuator, associated failure rate for each mission phase

and on line test and calibration requirements. Short of a detailed audit a coarse

specification that provides a gross decomposition of sensors as to appropriate

number in various portions of the vehicle, the number Of sensor/actuators that

support a particular subfunction, the number of sensor/actuators that have a given

redundancy level and the number that are time-critical or flight-critical and the

approximate bandwidth of each sensor category is necessary to establish credible

system requirements.

The proposed topology for the hardware elements and interconnections for each

vehicle configuration specified in the baseline requirements is desirable. In addition,

the allocation of subfunctions to specific hardware resources should be defined for

the range of MPRAS requirements.

4.2. Sensor/Actuator Data Interprocessor Communications

Performance

Background - As indicated in the previous section, the sensor/actuator I/O

interface and interprocessor communications, hardware compromises more than 50%
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of tlle total MPRAS hardware.Tile combineddata bandwidth of tile numerous
sensors/actuatorsis typically much lessthan tile bandwidth of tile conununication
network usedto collect/distribute thesedata. However,providing the capability to
distribute/collect thesedata ill a manner that is fault-tolerant and that is flexible
and scalableto meetdiverserequirementsfor a broad rangeof vehicleconfigurations
is not without performanceconsiderations.('ertain of the performanceanalysesfor
MPRAS indicted that sincethe total sensor/actuatordata bandwidthor the total
interfunction communicationsbandwidth representedonly a small fraction (less
than 5%) of the systemcommunicationnetwork bandwidth that a detailed
performanceanalysiswasnot necessary.Suchdesignand performanceanalysisis
questionedsincethe sensor/actuatorI/O connnunicationsperformancefor the
MPRAS architecturesis a potential risk areaand limiting factor. Communications
for the MPRAS sensor/actuatordata collection/distribution canbe definedas the
delivery of information with appropriatefault toleranceanderror checkingmeasures
from a sensorto a destinationfunction (softwaretask) or the deliveryof information
from a sourcefunction (softwaretask) to an actuator. Under this definition of

communications, not only is the conununication network links and signaling

hardware part of the communications path but the I/O hardware and software is

included as well. The delays associated with the network services software places

limits on the overall communications bandwidth for a distributed system. When

there are numerous sources and destinations uniformly sharing the communications

network, a fairly high network utilization can be maintained and the performance

limitations due to network services software can have modest impact on network

utilization. These performance limitations are more restrictive in networks where

communications are limited to a few destinations or where communications emanate

from a few sources. This is precisely the case for the sensor/actuator I/O

communications network. Under these circumstances, the overall conununication

bandwidth can be substantially lower than the network bandwidth.

Each of the few destinations or receivers were considered to have a message

processing latency. During the message processing, the receiver could not accept
new messages. Network utilization and overall communications bandwidth were

determined as functions of the ratio of the message time on the network to the

network service software message processing time.

Background - The process of systems design requires analysis of connnunication

network bandwidths. This analysis must consider the characteristics of the message

senders, the communication network, the message receivers, and the messages

themselves. Often, if the combined message traffic generated by the senders is a

small percentage of the communication network's bandwidth, the network is

thought to be sufficient, regardless of the receiver characteristics.
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However,if the receiveris unable to processits inconfing messagesin a timely
manner, messagesmay be lost. Messageprocessingfor many communication

networks is a software-intensive function which is typically many times slower than

tile amount of time that tile message transmission takes on the physical

connnunications link. Therefore, receiver characteristics cannot be ignored when

analyzing a system's conununication network.

Approach - With receiver characteristics in mind, a study was conducted to

exanline the expected performance of a network with many senders and few

receivers. The network was modeled as a bus for which each message contended. It

does not model network protocols such as token passing. Although this model is a

simplification of the operation of most communication networks in use today, it does

demonstrate the impact of receiver bandwidths on such networks. This

simplification has little effect on performance predictions when the receiver delays

are large relative to cable delays coupled with the presence of only a few receivers.

The model consisted of a maximum of 32 sender nodes, each connected through 32

corresponding bus nodes to a naaximum of 4 receiver nodes. Figure 4.1 is a diagram

of the modeled system.

Each sender and receiver node was modeled as having its own hardware, while all

bus nodes contended for the same bus hardware resource. Although there were a

maximum of 32 senders and 4 receivers, only the number of components of interest

were active during a given simulation. Each model node seized its hardware

resource for a period of time representing the time required to send, pass or receive

its data structure. This period (in seconds) was calculated by dividing data

structure size (in bits) by the bandwidth (bits/second) of the seized hardware

component. If messages queued up at a receiver node, the node's period was

modified to reflect the time required to execute all queued messages.

The network traffic model consisted of two types of messages, node-to-node and

broadcast. Node-to-node messages originated in a specific sender node and were

delivered to a specific destination or receiver node. Node-to-node messages were

generated so that each destination node received an equal number of messages from

each send node during a given interval. Broadcast messages originated in specific

send nodes and were simultaneously delivered to all designation or receive nodes. A

certain percentage of the messages from each send node were broadcast messages.

Node-to-node messages account for sensor data that is used by a single processing

site. Whereas, broadcast messages account for sensor data that is used by all

processing sites.

Parameter Variation - Two model parameters were designated independent

variables to be altered to observe the impact on the utilization of the model's
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components and the system's total effective bandwidth. They were the bandwidth

of each receiver and the ratio of senders to receivers. The bandwidth of each

receiver was varied relative to the constant bandwidth of the network. The receiver

to network bandwidths ratios were 128:1, 84:1, 32:1, 18:1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4,

1:8, l:lfi, 1:32, 1:64, and 1:128. The ratio of senders to receivers were varied to

include 32:4, 18:4, 8:4, 4:4, 32:2, 16:2, 8:2, 4:2, 2:2, 32:1, 16:1, 8:1, 4:1, 2:1, and 1:1.

For the cases discussed in the following section, the bandwidth of each sender ws set

at 1/6 of the bus bandwidth and the percentage of broadcast messages was set to a
small value.

Component Utilizations Per Sender to Receiver Ratio - Sender to receiver

ratios were statically established prior to each simulation run. For each run, the

results showed that the utilization of ead_ component varied with the receiver

bandwidth to bus bandwidth ratio (RB:BB).

Figure 4.2 shows the percent utilizations of one sender, the bus and one receiver for

the case of 1 sender and 1 receiver.
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Figure 4.2. Utilization of Model Components for 1 Sender and 1 Receiver.

As the receiver bandwidth decreased relative to the bus' ability to provide data (to

the 1:1 ratio), the sender was the limiting factor of the system. Both the bus and

the receiver were waiting for the sender to supply messages to them. At an RB:BB
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of 1:1,tile bandwidthsof tile busand the receiverwereequal,both beingutilized at
approximately17percent. BetweenRB:BBsof 1:4and 1:8,tile receiver'sbandwidth
decreasedto tile point whereboth the busand the sendersuppliedmessagesfaster
than tile receivercould handle.The receiverwastile limiting factor of the system's
effectivebandwidth.

Figure4.3 showsthe percentutilizationsof eachof two senders,the busand one
receiverfor the caseof 2 sendersand 1 receiver.
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Figure 4.3. Utilization of Model Components for 2 Senders and I Receiver.

These results are different from tile previous case. Notice. that between RB:BBs of

1:2 and 1:4, the receiver's bandwidth decreased to the point of beconfing the

limiting factor of the system's effective bandwidth. In the prior case, this occurred
between 1:4 and 1:8. The results in this instance are because there are twice as

many suppliers of messages to the one receiver. Twice the number of messages also

produced an increased utilization of the bus from 17 to 33 percent.

This crossover point continues to move to the left on the RB:BB scale until the S:R

becomes 8:1 (Figure 4.4).

Here, the bus was the limiting factor from an RB:BBs 128:1 through 2:1. At the

RB:BB of 1:1, the utilization of tile bus and the receiver were tile same and from

RB:BBs 1:2 through 1:128 the receiver was the Limiting factor.
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Figure 4.4. Utilization of Model Components for 8 Senders and 1 Receiver.

As the number of senders was increased while the number of receivers was kept at 1,

the bus limited the system ba,dwidth until the RB:BB of 1:1, when the receiver

became the limiting system component.

When the ,umber of receivers was doubled to two, the crossover point of the

utilization curves of the bus and each receiver became the RB:BB of 1:2. This can

be explained by the fact that each receiver was receiving half the number of

messages going through the bus. By comparing Figures 4.2 and 4.5, one can see
that the sender and receiver utilization curves are at the same RB:BB location. The

crossover occurs at this point whenever the number of senders equals the number of
receivers.

Similar to the single receiver case, as the number of senders was increased and the

number of receivers held constant, the bus' utilization increased, becoming the

limiting factor until its bandwidth equaled the combined bandwidths of all receivers.

At that point, as above, the utilization of the receiver became dominant. This can

be seen i_ Figure 4.6.

Component Utilizations Across Sender to Receiver Ratios - The impact of

the S:R can be seen by examining the utilization on one component across

numerous S:Rs, such as that of the cormnunication network as seen in Figure 4.7.
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For cases where the number of senders was less than 8, the dominant co,.po.ent

utilization for RB:BBs of less than or equal to 1:1 is that of the sender. For tile

same RB:BB range, when" then'uml_er of senders is 8 or greater, the network's

utilization is dominant. As discussed above, an increase in the number of receivers

causes the knee of the .etwork's utilization to shift to the right on the RB:BB scale.

The correspo.ding curve for the utilization of each receiver is shown in Figure 4.8.
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Figure 4.8. Utilization of Each Receiver Across Sender to Receiver Ratios.

Effective System Bandwidth - The results of this study indicates that the

effective bandwidth of the network is determined by the combined bandwidth of all

receivers and not by the bandwidth of the bus alone. As the combined bandwidth of

the receivers diminished, so did the effective bandwidth of the system as a whole.

The system's bandwidth relative to that of the network alone is shown in Figure 4.9.

The system's effective bandwidth was calculated by dividing the total number of

bits received by the total simulation time. When the receiver message processing

delays become large relative to the physical communication link message

transmission time coupled with the presence of only a few receivers, link bandwidth

utilization decreases. At ratios of _$0:1 to 100:1, utilization is severely limited by the

receiver message processing delay.

In addition, to this model, measurements of the message processing time for a
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general purpose communication network consisting of Ethernet system coupled with

DECNET and VAXELN network service software were maxie as a reference point.

These measurements indicate a message processing time to message cable time ratio

of about 100:l for the 10Mbits/second cable and 1 Mip processors. RTI's experience

with other network communications indicates that this is a not an uncommon ratio.

Depending on the number of destinations or receivers, the model indicates that the

maximum network utilization that can be expected would be in the 1 to l0 percent

utilization range with such ratios. Good engineering practice dictates that network

service message processing delays due to normal message a.ssembly and delivery and

due to error checking and fault tolerance related processing, should be analyzed and

predicted to determine the limitations of the architecture. The communications

models and measurements referred to in this paragraph are detailed in Appendix B.

/tIPS I/O and Intercomputer Communications- Figure 4.10 shows the

hardware elements associated with as] AIPS FTP processing channel. A processing

channel consists of a computational processor (CP), an input/output processor

(IOP), a shared memory, a data exchange and voter unit, a dual ported memory

(DPM), an Input/Output sequencer (IOS), an intercomputer interface sequencer

(ICIS), an I/O network and an intercomputer cotmnunications network. Circuit

switched ]/O network nodes and links establish conmmnications from the [OS and
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the DIU's. Sparenodesand links are providedso that communicationsto all DIU's
can bemaintainedvia reconfigurationin the eventof network failures. I/0 network
systemservicessoftwareprovidesfor communicationsbetweenuser tasksand the
sensorsand actuators connectedto tile I/O networksin an AIPS system. In
addition to the messageprocessingand delivery functions requiredfor I/O
communications,I/O network servicesprovidesfor fault detectionand isolation
capability for the I/O hardwareelements,reconfiguresthe I/O network hardwareas
dictated by I/O hardwarefailuresand providesfor distribution of consistentinput
data to all non-faulted redundantchannels.

r----- i r I

'l I' 'l I'I PROCEEEOR I . . I PROCE880R I

I I I I
I i | I

'[ I', / 'l I'I I SHARED I I
I MEMORY I 8U8 MEMORY I
I I
I I I

I OP I I lOP I
I I

mm i Imi mIUm. . .I ..... I

_MOUE_O SHARED DUAL
RY MEMORY EXCHANIE PORT

AND VOTER MEMORY

ICIE IO8

IC
NET

CROSS
CHANNEL IIO
LINKS NET

I10 NODES

Figure 4.10. FTP Architecture and I/O Data Flow

Au application task running in the CP issues an I/O request through the I/O

services resident in the CP. The I/O services resident in the lOP receives the I/O

request and issues a command to the IOS to activate a programmed chain of I/O

network transactions which are associated with the specific I/O request. The lOS

then issues commands to specific DIU's on the I/O network. For each command the

selected DIU responds with a message which is processed in the lOS interface and
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stored in tile DPM. Typically, tile message contents are distributed to other

redundant channels via tile data exchange unit and are delivered to the shared

memory. The IOP processes the received messages and performs error processing.

The message contents are then delivered to the application task in the C'P.

Typically, only a single connnand is required by the lOS to carry out a complex set

of I/O operations. The lOP is relieved of much of the detailed control necessary to

implement the I/O transfers.

Even with the mechanization of the detailed I/O control via the IOS and

programmed chains, AIPS I/O operations are software intensive. Maintaining

general and flexible I/O services while providing high coverage fault detection and

network reconfiguration capabilities leads to I/O throughput that is much less than

the I/O network bandwidth. Effective I/O bandwidth has been one of the primary

performance linriting factors of the current FTP design.

Measurements of I/O request processing times for the A IPS proof-of-concept system

have indicated that the message processing time exceeds the I/O network cable time

by factors of 25 to 50. On an average, in excess of 100 IOP instructions are required

for each sample acquired via the 1/O network. Further, to meet the latency (2 to 5

milliseconds) and control loop update rates (100Hz) required for MPRAS, the I/O

request processing time must be reduced by a factor of 10 to 20. Significant I/O

speedup cannot be achieved by increasing the bandwidth of the I/O network. Faster

data exchange and voting hardware, higher throughput processors (CP and IOP),

use of a more efficient Ada compiler and more efficient I/O service software are

candidate areas to provide the necessary speedup. The AIPS processors expected to

be used for MPRAS should provide at least a factor of 5 to 10 speedup over the

AIPS proof-of-concept model. Additional, speedup beyond that of the processors

will likely be required to meet the MPRAS requirements. Only after the I/O

request processing time has been reduced by the factors indicated would it be

worthwhile to increase the I/O network bandwidth by a factor of 5 to 10 and to

speed-up the voter from the 2.5 to 5 microseconds per word of the current

proof-of-concept model. Note that speed-up of the voter can be limited by the

amount of time skew permitted between channels.

Due to I/O overhead, the effective I/O bandwidth which accounts for both the I/O

network bandwidth and the I/O request processing time depends on the number of

sensors that can be read in a single I/O request which in turn is application

dependent. Based on the measured I/O request times reported, the effective I/O

bandwidth for a flight-control application was between 1.5x104 and 3x104

bits/second. The actual I/O network bandwidth was 2x108 bits/second. Only about

1% of the actual network bandwidth could be used. If the I/O request processing

time is reduced by a factor of 20, the effective I/O bandwidth could be increased to
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about 5x10 s bits/second. Since tile combined bandwidth of all MPRAS sensors and

actuators is between l xl0 s bits/second and 6x 10 6 bits/second, an effective

bandwidth of 5x10 s bits/second for a single I/O network should be sufficient for

AIPS to meet MPRAS requirements. Figure 4.11 sununarizes tile structure of the

AIPS I/O data delivery path.

Tile AIPS intercomputer network provides communications between processing

sites. The ICIS shown in Figure 4.10 provides an interface to a layered (redundant)

intercomputer data network and controls data transfers between the IC network and

the processing channel. Each redundant channel of the processing site can transmit

on a layer of the network and receives data from all layers of the network. Received

data can be selected from any layer or can be voted across all layers.

Circuit-switched IC nodes and data links provide communications between

processing sites and in the event of network failures can be reconfigured to maintain

communications.

The intercomputer system services provides intercomputer communication service

for user tasks, provides a mechanism for maintaining time across distributed

processing sites, and manages tile fault detection, isolation and reconfiguration for

each layer of the IC network. The IC conmmnication services architecture is

designed in a layered approach sinfilar to the proposed Open Systems

Interconnection protocols. The layers are:

1. the physical layer

2. the data link layer

3. tile network layer

4. the transport layer

5. the session layer

6. the presentation layer

7. the process or application layer

The ICIS provides the mechanism for controlling the IC data communications via

high-level conunands from the lOP. Even with these ICIS features the IC system

services is software intensive. In the same areas it is more complex than the I/O

network services. At present the IC message delivery times for the proof-of-concept

system have not been characterized. It should be expected that those delivery times

will be of the same order as the I/O request processing times for the I/O network
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services. In fact, tile delay components due to use of the IC network will increase

due to the time required to contend for network access. Interfunction

comnmnication requirements for MPRAS are as high as 12.8x10 s bits/second

combined and range from negligible to about 3x10 s bits/second for any single

function. If functions are allocated to processing sites such that these larger

interfunction communications must take place across the IC network, IC'

communication requirements will be demanding. To meet these requirements, the

proof-of-concept IC bandwidth must be increased substantially from the current

2xl 0s bits/second.

In addition, to maintain sufficient effective IC bandwidth the IC message delivery

times must be reduced from those that will be realized in the proobof-concept

system. Message delivery times of a few microseconds per byte instead of tens or

hundreds of nficroseconds per byte will be required. If the higher interfunction

requirements are valid and if the functions with the larger requirements must make

use of the IC network, the [C message delivery time will be one of the highest

performance risk areas for AIPS applied to MPRAS.

Network reconfiguration times for both the IC and I/O networks will not be critical

for MPRAS since reconfiguration will only be allowed during the pre-launch phase

when sut_cient time is available for reconfiguration.

Boeing I/O and Intercomputer Communications -Figure 4.12 diagranrs the

hardware modules associated with a processing channel in the General Dynamics

architecture. A channel is comprised of a local signal conditioner, an I/O chamlel

module, a system bus module, a fault tolerance module, an I/O interface module, a

processor module, a memory module, an output module, a MIL-STD 1773 flight

control bus, a MIL-STD 1773 transducer network bus and an HSDB system bus.

The software that provides for communications between application tasks and the

sensor/actuator network and manages network failures has not been specified for

the Boeing architecture.

Two distinct types of sensor/actuator I/O has been defined for the Boeing

architecture, time critical and non-time critical. Time critical I/O is handled using

the MIL-STD 1773 flight control bus. Non-time critical I/O is handled using the

transducer network and the HSDB system bus. Figure 4.12 shows a conjectured

sequence for time critical I/O data flow via the flight control bus. Sensor data from

a local signal conditioner is transferred to an I/O interface module memory via the

flight control bus. This transfer requires I/O interface module software to check for

data errors and to control delivery of the data to a desired destination. It is

assumed that in order to have consistent sensor data in all redundant processing
channels the fault tolerance module will be used to distribute and vote sensor data

across the redundant channels. This is believed to be within the intended use of the
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fault tolerancemodule. However,tim designfor and useof this module has not been

clearly specified for the Boeing architecture. Following this assumption, data would
be transferred to the fault tolerance module via the PI bus. This data would be

distributed to the other redundant channels via cross channel data links. Siufilarly,

data from redundant sensors acquired by the other redundant channels would have

to be distributed to all channels as well. Presumably, errors occurring during these

sensor data distribution processes would be detected, processed and reported by

software in the fault tolerance module. In addition, the redundant sensor data could

be processed to obtain a single set of sensor data which in turn could be distributed

to all channels via the cross channel links and voted by the fault tolerance module.

Finally, either the redundant sensor data sets or a single voted sensor data set

would be delivered to the requesting application task executing in the processor

module via designated locations in processor memory. I/O service software in the

processor module would be required to manage this process.

Figure 4.13 illustrates a conjectured data flow sequence for non-time critical I/O for

the Boeing architecture. It differs from time critical I/O in that sensor data is

transferred via the transducer network, an I/O channel module and a system bus

module. (The switched BIU function shown is expected to reside on the fault

tolerance module.) I/O software to direct these transfers and to detect and report

errors would be required in the appropriate modules. Further, the HSDB module

software would have to manage the token ring protocol of the HSDB and any

required network flow control. Sensor data received in the system bus module would

then be passed to the fault tolerance module where the process would proceed as

previously conjectured. Figure 4.14 summarizes the structure of the Boeing

non-critical I/O data network.

The message delivery time associated with sensor data would be the sum of the

times required to complete each step in the process. In the worst case, the time

between the delivery of one sensor data message and the next sensor data message

would be the same as message delivery time. The communications bandwidth

realized would be determined by this message delivery time as opposed to the

bandwidth of the data transfer busses. If the message delivery process is designed so

that a new message can be started as soon as a given hardware element such as the

I/O interface module has completed its operations on the previous message, the

time between sensor data messages will be reduced from the sum of the times

required to complete all steps in the delivery process to the longest time that a

single hardware module is used in the delivery process. In this case, message

delivery would be designed as a pipelined sequence of steps.

Components of the overall message delivery time for the data flow sequence
described above include:
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1. the time required for data to be solicited from a local signal conditioner after

an application task has requested data.

2. the time required for the local signal conditioner to respond.

3. tile time required to check for errors in each step.

4. tile time required to determine tile destination of received data.

5. the time required for data formatting.

6. the time required to distribute data across redundant processing channels.

7. the time required to transfer data into and out of the various memories

involved in the message delivery process.

8. the time required to reduce the redundant sensor data sets to a single

consistent sensor data set for all operational channels.

9. the task switching times associated with each processor in the message

delivery path.

None of the performance evaluations reported by Boeing indicate the extent to

which the data delivery sequence, the associated error checking and the

management of redundant sensor data were incorporated in the system performauce

evaluation. The data delivery time rather than bus bandwidth is the limiting factor

for both I/O and interprocessor communications. It is more critical that this factor

be analyzed for the Boeing architecture because of themore centralized processing

topology proposed. That is, data from the large number of sensors are delivered to

fewer core processing sites in the Boeing architecture and, consequently, a higher

data bandwidth is required at each site.

Architecture elements such as the I/O channel module, the I/O interface module,

and the system bus module must handle the data rate associated with the signal

conditioners connected to the processing channel. Since redundant sensor data must

be distributed to all processing channels, the fault tolerance module must handle

the data rate associated with all local signal conditioners connected to the

redundant channels of a processing site. While all delay factors in the data delivery

mechanisms were of concern, the handling of sensor data in the fault tolerance

module was exanfined more closely.

The functionality and use of the fault tolerance module is not described extensively

in the Boeing specifications. With the exception of calling out a 3.5 MIP processor,

the performance of the fault tolerance-model is not specified. Assuming that the
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module will be used to establish consistent sensor data across processors, to

synchronize redundant channels, to vote partially processed results, to distribute

error data and status across redundant channels, and to align processor states

during recovery, only a portion of its capacity can safely be allocated to establishing

consistent sensor data. A simple performance calculation can be made for the fault

tolerance ,nodule. Assume that 25% of the fault tolerance ,nodule capacity can be

dedicated to establishing sensor data consistency and that 500 kbps of the

maximum specified sensor data rate, 1 mbps, must be handled by a processing site.

Further, assume that the sensor data rate is unifornfly distributed across quad

redundant channels. The average time between 16-bit sensor data words in each

channel is then 128 microseconds. A simple model of the relationship between the

sensor data word interval and fault tolerance module performance is give,, by:

where:
R

Toy
Ts
I

T1
CAS

TSD

R(TDv + Ts + I. 7"i)< CASTSD

= redundancy

= time required to distribute and vote a simplex sensor data word

= time skew between redundant processing channels

= average number of instructions allocated to handling a word to be

distributed and voted including memory transfers and error processing

(These are instructions that cannot be overlapped with the distribution

process)

= average instruction time of the processor in the fault tolerance module

= % fault tolerance module capacity dedicated to sensor data consistency

= average interval between sensor data words within a processing channel

(4.1)

Note that all fault tolerance module times are multiplied by the redundancy factor

R. This is due to the need to distribute copies of the redundant sensor data to all

channels in order to assure consistent data in all operational channels. Note also

that it is assumed that the skew between redundant channels impacts the voting of

each word. The impact of channel skew depends on the design of the fault tolerance

module which was not given by Boeing. This simple model accounts for establishing

R sensor data sets in each processing channel. Additional processing would be

required to establish a single voted sensor data set.

If a skew of 1 microsecond and l0 instructions are required for each word, the time

to distribute and vote simplex data must be less than 4 microseconds per word or 4

mbps. This results in a reasonable specification for the fault tolerance module

distribution/vote timing. If 20 instructions are required for each word, the time for
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distributing and voting must be lessthan 1 nficrosecondper wordor 16mbps. This
would result ill a muchmoredemandingspecificationfor tile fault tolerancemodule.
Recallthat the AIPS requiresin excessof I00 instructions on averagefor eachsensor
sampledeliveredto an application task. Thus, 10 instructions per wordfor this
portion of the sensordelivery is very tightly coded. If the more demanding 1/O rate

of 6 Mbps as estimated by tile Martin Marietta specifications must be met instead

of tile 1 Mbps rate, the fault tolerance module processor would have to be much

faster than 3.5 MIPS, the channel skew would have to be reduced, the distributed

vote time would have to be reduced and the 1773 busses would not be adequate.

Since the channel timing skew, the average number of instructions per word, the

distribution/voting time and the module capacity dedicated to each fault tolerance

module function such as synchronization or sensor data consistency, it is not

possible to assess the adequacy of tile Boeing de.sign. It is further believed that the

performance of the fault tolerance module is critical and, left unspecified and

unanalyzed, represents a significant technical risk.

Since tile proposed Boeing topology has only a GN&C processing site and a vehicle

management processing site, most interfunction conununication takes place within

the processing sites and does not require the use of tile system HSDB. Thus, the

bandwidth of the bus and even the effective bandwidth of interprocessor

communication software would not likely linfit system communications. If Boeing's

low estimates for propulsion control throughput do not hold and additional

processing sites must be introduced into the Boeing design, substantial portions of

interfunction I/O will be implemented via the system HSDB and the performance of

the interprocessor colmnunications software will have to be analyzed to determine

its adequacy.

Further development of tlle Boeing M PRAS architecture should be predicated upon

a better definition and performance analysis of the I/O and interprocessor
communica, tions software.

General Dynamics I/O and Intercomputer Communications - Figure 4.15

diagrams the hardware modules associated with a channel of a Remote Data

Interface (RDI) or a processor in the General Dynamics architecture. An RDI

channel is comprised of a sensor input module, a local data link module, a

self-checking pair processor/memory module, a system bus module and an output

module. The software that provides communications between application tasks and

the sensors and actuators, and manages the network errors has not been specified

for the General Dynamics architecture.

Illustrated in Figure 4.15 is a sequence of I/O data flow operations that is presumed

for a Remote Data Interface (RDI) of the Boeing architecture. Sampled sensor data
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is transferred from the sensor input module to the local data link module. Sensor

data is distributed to other redundant processing channels via the cross channel

data links. Redundant sensor data is also received from other channels via the cross

channel data links. Presumably, each channel will derive a single set of sensor data

which will be assembled into a message and transferred to core processing sites such

as the vehicle management processor via the redundant HSDB system data bus.

Sensor data messages received by the core processing site will be processed for

errors and directed to appropriate application tasks. Figure 4.16 shows the overall

sensor data collection structure of the General Dynanfics architecture. Multiple

RDI's transfer redundant voted data to core processing sites via the HSDB.

Similar to the Boeing arclfitecture, the software to handle the required sequence of

operations to deliver consistent sensor data to application tasks has not be defined

nor has its performance characteristics been analyzed and specified. Of concern is

overall latency of data delivery and the effective sensor data conununications

bandwidth. The performance and functionality of the local data link module was

not defined for MPRAS Part 1. It is assumed that this module will provide for

distribution and voting to assure consistent sensor data in all channels, will provide

for synchronization of redundant channels, will provide for alignment of the state of

channels during recovery and will provide for distribution of error information and

status between redundant channels. The distributed structure of the General

Dynanfics architecture can reduce the throughput requirements for the local data

link module relative to that required for the Boeing fault tolerance module. By

distributing the voting and data distribution function to local or regional data

collection sites, the throughput requirements for any one site is reduced from that

required for a more centralized approach. In this respect, a more distributed sensor

data collection structure tends to be more expandable and places less demanding

performance requirements on the local data link modules. However, unless properly

designed, the additional voting planes required in the distributed architecture could

result in higher costs.

As was the case with the Boeing fault tolerance module, the definition of the local

data link module was not sufficient to assess the adequacy of its functionality and

performance for the MPRAS application. Since this module is expected to provide

the functions that are essential to the redundancy management of a multipath

system, incomplete functional specification and performance analysis of this module

represents a significant technical risk.

Communications between processing sites and the delivery of sensor data to

processing sites is provided by the redundant HSDB system data bus. The General

Dynamics computation model sets this communications rate at 12.8 mbps which is

about 25% of the HSDB capacity. Capabifity to actually realize this
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Figure 4.16. General Dynamics I/O Structure
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conununications bandwidth depends upon tile software data delivery delays and the

distribution of this requirement across the processing sites. Input requirements are

highest for the vehicle management processor which provides control functions, the

data recording group, and the telemetry processing group. Tile software that

provides for preparation of data messages to be sent and for the delivery of data to

an application task must be capable of sustaining the peak data rate while

providing tlle necessary error detection and naanage,nent capability. General

Dynanlics has proposed the Table Driven Proportional Access timing approach

which was devised by Honeywell SRC. Using this approach, bus transmissions are

prescheduled and message lengths and destinations are predetermined during the

application software development process and occur at deterufiuistic times. This

approach has the potential to simplify and hence improve conununications

performance by eliminating the time required for contention on the system bus, by

reducing the need for source, destination, and message length information in

messages and by reducing tile processing overhead required to deliver a message to

an application task relative to that required by a general purpose network message

handling software. Since this software has not been specified and described, it was

not possible to analyze tile performance of it.

To achieve the peak input rate to the vehicle management processor from the

system bus of 0.9x106 bytes/second, the HSDB interface module must complete its

processing of a data word in an average of 2.2 nficroseconds. If the processor on the

JIAWG HSDB module has the current throughput of 3.5 MIPS, approximately 7

instructions can be executed for each word handled. This would result in 100%

loading of the HSDB module and would not allow for system output. Even without

defi,fition of the interprocessor conmaunication software; it can be concluded that

using the current standard JIAWG HSDB module is not feasible to meet the vehicle

management processor input requirements as given in the General Dy,aamics

MPRAS Point Design System Partitioning of August 2, 1989.

As with the Boeing architecture, further development of the General Dynamics

MPRAS architecture should not proceed without more careful definition and

performance analysis of the I/O and interprocessor communications software.
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5. FAULT TOLERANCE FEATURES OF MPRAS

ARCHITECTURES

5.1. Introduction

To provide tile advanced functional features, such as adaptive guidance and control

and vehicle health management, which are expected to enable substantial savings ill

launch operations, the complexity of the avionics hardware is much greater than

that for current launch vehicles. A consequence of this increased complexity is an

increase in unreliability. To offset this reduction in reliability and to further reduce

launch vehicle costs due to unreliability, the use of fault-tolerant systems technology

for the ALS avionics was examined under the MPRAS ADP's. While essential

architecture characteristics such as performance and use of common modules had to

be considered for MPRAS, the primary focus was to be on the infusion of

fault-tolerant system technology into the ALS avionics. Identification of appropriate

fault tolerance techniques, definition of suitable system development methods,

assessment of potential benefits, linfitations and technology risks and the

preparation of technology development plans were among the goals of the MPRAS

ADP's.

The designs of the fault tolerance features for the proposed MPRAS architectures

were reviewed to determine adequacy, completeness and potential development

risks. The primary areas focused on were: I) fault masking and data consistency

mechanisms, 2) fault detection mechanisms, 3) fault recovery techniques, 4)

redundancy and sparing, and 5) validation and development methods.

5.2. Fault Masking and Data Consistency Mechanisms

5.2.1. Background

Fault masking provides fault toleran_ through the use of redundancy to isolate or

correct fault effects before erroneous outputs can propagate from a failed module.

Each of the proposed MPRAS architectures relies on N-modular redundancy with

voting to mask processing and computational errors. N-modular redundancy is

based on the comparison of data from redundant channels to detect and mask
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faults. For this comparison to be effective, the following conditions are necessary:

1. The redundant processors have to be synchronized to a known and bounded

tinting skew.

2. The redundant processors must be initialized to consistent starting conditions.

3. All redundant processors must gather inputs and produce outputs in tile same
order.

4. Bitwise identical inputs must be used ill the redundant processors.

5. A mechanism to detect bitwise disagreement between redundant processors
must be used.

Synchronization is needed to establish an a priori limit on processing time so that a

slow non-failed processor can be differentiated from all inactive failed processor, tile

comparator can know when valid outputs have been received, and duplicated sites

can achieve bitwise consensus on input data. It can be achieved by communication

between channels, which is subject to faults ill either channel or in the inter-channel

communication mechanisnas, or by tile provision of a reliable clocking signal on each

channel to which all channels synchronize.

The requirement for bitwise identical computation and output agreement requires

bitwise identical input, which in turn requires that all channels use identical or

consistent input data. To assure that identical inputs are distributed to all channels

in the presence of arbitrary failures, an input consistency protocol is required that is

f-Byzantine resilient; i.e., can tolerate f arbitrary failures. For an input consistency

protocol to be f-Byzantine resilient requires: 1) at least 3f+l participants, 2) each

participant to be connected to at least 2f+l other participants through disjoint

communication paths, 3) at least f+l rounds of communication among the

participants, and 4) the synchronization of the participants within a known skew.

The participants in the protocol need to be fault containment regions; i.e., regions

to which faults can be sufficiently contained to ensure the statistical independence

of failures in any two regions. Otherwise, single failures could result in the

simultaneous loss of more than one of the redundant channels. Therefore, four

FCR's are required to tolerate one arbitrary failure. Four architectural features lead

to independence of failure: 1) physical isolation, 2) electrical isolation, 3)

independent power, and 4) independent clocking.

Fault masking and data consistency mechanisms are essential elelnents for achieving

fault tolerance with a multipath redundant system. Unless these naechanisms are

properly designed, the potential reliability of a multipath system cannot be realized.

So important are these mechanisms that an architecture design cannot credibly be

110



represented as fault tolerant unless these mechanisms are rather fully specified as to

functionality and performance. Proceeding with an architecture development

without such specifications should be considered a technical and development risk.

Tile mecl_anisms which provide fault masking and data consistency for each

proposed MPRAS architecture are discussed in the following paragraphs.

5.2.2. General Dynamics Fault Masking

Output Voting - Digital outputs from each redundant string are voted bit-for-bit

in the General Dynamics output modules. Each redundant string may have an

output module capable of driving nmltiple actuators. The voted outputs from each

string are converted and then used to drive redundant actuators. Up to four
redundant channels can be voted. The specificlation of the output module

functionality and performance is incomplete in several essential areas. Among those

characteristics left unspecified are: 1) the nominal timing skew allowed between

redundant strings and the output data/command buffering required to align skewed

outputs at voter inputs, 2) how an output module responds if a redundant string

fails to deliver data to be voted, 3) if and how a bad string can be excluded from a

vote, 4) if and how minority strings are identified and reported, 5) if and how the

voter and minority reporting are checked during operation, and 6) the data

bandwidth of the voter and drive converter elements. Without specification of these

essential functions, the design of the output fault masking is incomplete and its

adequacy cannot be assessed. No specific redundant channel fault masking is

provided for communications on the system bus. Accordingly, the failure rates for

all processing sites within a channel along with the failure rates of the bus

communication paths are added to obtain the failure rate for a single string.

Input Data Consistency - Voting of output data values depends upon each

redundant channel having consistent input data. The General Dynamics

architecture provides for a Local Data Link (LDL) module which can be used to
establish consistent data in each redundant channel. Cross channel communication

paths are used to pass data between LDL modules in redundant channels.

Redundant data from multiple strings can be voted in the LDL. Communications

paths are optically isolated to maintain independent fault containment areas. This

prevents failures on a link driver or receiver from causing all LDL's to fail. It is

implied that the communication paths will be either self-checking paths or will use

error detection and correction coding to ensure reliable cross channel

communications. A description of the options for establishing consistent input is

given in the following paragraphs.

The architecture uses two methods to ensure consistency of the sensor input
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data-syntactic error checks and semantic checks. When possible, the architecture

depends on syntactic error checks to detect potential faults. Where syntactic checks

are not effective, it relies on semantic checks to detect errors based on the value or

reasonableness of the data. Semantic checks are dependent on application and

therefore left up to the programmer to implement. Syntactic checks, such as a

bit-for-bit vote of the three redundant channel outputs, are performed automatically

by the system. The LDL provides the hardware means by which these syntactic

checks are performed. The RDI's, designed to collect sensor data and develop a

single, consistent input value for each channel, can be configured in a variety of

options depending on the criticality of the sensor data and the redundancy level of

the sensor. In the case of a single flight critical sensor, two options are specified.

The first option ties the sensor to channel A of the RDI and the data value is

distributed to channels B and C via the LDL data exchange. This option does not

guarantee input consistency in the presence of arbitrary failures in channel A.

The second option cross-straps the sensor to four channels: A,B, and C and a fourth

consisting of a sensor interface and an LDL module. The addition of the fourth

channel provides the fourth fault containment area which is the basis for a

Byzantine-resilient protocol. However, it is not clear whether the required two

rounds of comnmnication are to be provided. The guidance given for using the

sensor cross strapping option instead of the capture then distribute option was that

the reliability of the sensor and the cross strap wiring should be much higher than

that of the sensor interface and the LDL module. It is RTI's opinion that the

decision must also include the probability that for certain upset events such as

lightning strikes, the sensor cross strap wiring makes all channels vulnerable to

damage. That is, use of sensor cross strapping can make the system more

susceptible to non-recoverable common mode failures.

Instead of using the above approach to distributing consistent input data, an

approach which provides the appropriate number of fault containment regions and

disjoint conmmnication paths for a protocol that tolerates arbitrary behavior could

have been considered for the LDL. When error correcting or self checking

communication paths, multiple rounds of communications and the extra sensor

input and LDL module proposed by General Dynanfics are taken into consideration,

this approach could in fact be less complex and expensive, hnportant unspecified

characteristics of the LDL function include: 1) the maximum timing skew between

redundant channels, 2) the impact of the skew upon LDL throughput, 3) the

buffering required to align voter inputs in the presence of skew, 4) the behavior of

the LDL when the LDL in a redundant string fails to deliver expected data, 5) if

and how a faulty channel is excluded from a vote, 6) if and how a minority string is

reported, 7) if and how the voter and error report logic are checked, 8) the necessary
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bandwidth for the LDL function, and 9) tile specifics of the cross channel link

self-checking or error correction functions. Without specification of the essential

functions, the design of the LDL is incomplete and its adequacy cannot be assessed.

As such, this represents a significant development risk.

Synchronization - There are three types of synchronization that must be carried

out for the General Dynanfics architecture. The first type is the synchronization of

the two processors in the self-checking pair (SCP) processor module. The second

type is the establishment of synchronization of all processing elements within a

redundant channel. The third type is the synchronization of the redundant strings.

The synchronization of processing elements within a channel provides the basis for

communication on the system bus. Communication between Bus Interface Units

(BIU's) within the architecture is accomplished with decentralized bus control via

Table Driven Proportional Access (TDPA). TDPA is a time-multiplexed scheme

based on a coordinated allocation vector in each BIU. This perntits processors to

share a bus without an explicit bus controller. Connections to the bus consist of

both transmit/receive and receive only ports. Each BIU has a unique (for its

transmitting bus) identification (ID) code which determines when a particular
module is allowed to transmit to the system bus. Each processor contains a bus

access table or vector. The access table allows only one module access to the bus at

any one time. Using the same access table, each module's BIU checks to see if its ID
number matches the access table's current time slot ID as listed in the access table.

If so, that module has transmission rights on the system bus at that time. Proper

maintenance of the access table pointer by all system modules maintains

synchronization across the system. Each processor has special algorithms that

maintain synchronization with the system bus and provide for resynchronization to

the bus when required. The length of the access table and the bus clock rate impose

a frame rate for data transfer on a given bus. Because the data type to be

transntitted in a particular slot is known ahead of time, it is possible to allocate a

tight message window time to each slot. The window is large enough to

accommodate a message of the prescribed number of words along with tolerances for

timing skews between processors. Each TDPA frame is composed of a number of

time slots. Each time slot has a message window and an inter-message gap. The

message window is made large enough to accommodate a message of the indicated

data type as well as tolerances on either side for BIU-to-BIU timing skew. The

inter-message gap is a fixed size determined largely by the amount of time required

by each BIU to set up for the next message. The tinting skew between BIU's and

the synchronization and resynchronization algorithms have not been specified. A

non-responding BIU does not affect the timing of any other messages sent by other

modules. Therefore, the time to run completely through the table is always known
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and is independentof the numberof timed-out nlessagesaslongas there isat least
one messagetransnaittedduring eachcyclethrough tile table. This mecllan_smis

said to yield completely time-determinate system operation and that tile access

table can be configured to insure that time critical data transfers are supported.

Establishing and maintaining synchronization of redundant strings is necessary to

satisfy the bounded skew requirements for voting of redundant processor outputs

and for establistfing consistent input data. The LDL modules in a string provide tile

only cross channel conmmnication paths by which cross channel synchronization can

be achieved. Description of this process for the General Dynanfics architecture is

limited to the following statements: 1) "The exchange of data across channels tends

to provide inter-channel synchronization. This exchange of information provides a

means by which the skew between channels is limited and directly affects any

time-out functions implemented within the system." and 2) "Strings synchronize

with each other at message boundaries according to the TDPA meclmnism." This

description is insufficient to determine the functionality and adequacy of redundant

channel synchronization. Tlfis description leaves the actual bound on time skew

unspecified. Note that in addition to affecting time-out functions, skew between

redundant channels can add to the sample data control loop latency or lag, can

linfit the coherency of sensor data samples and, depending upon LDL design details,

may linfit LDL bandwidth. Note also that the skew within a string may be additive

with the cross channel skew in turn producing a larger overall skew. Also left

unspecified is the explicit mechanism or algoritlnn by which synchronization is

established initially, maintained in the face of relative tinting drift and

re-established following transient faults. Since there are multiple processing

elements and associated LDL modules within the system, it is not clear if one set or

all sets are involved in this cross channel synchronization process. If more than one

set is involved, their mutual coordination may need to be specified. If only one set is

involved, the designation of this master set and tile potential need for alternate

masters may need to be specified.

Without more complete specification of the synchronization of redundant channels,

the fault tolerance of the architecture cannot be evaluated. The role of this

synchronization is of such importance to the fault tolerance of a multipath system

that development of the architecture should not proceed without a more complete
specification of this function.

Error Correction Features - Error correction techniques can be employed to

mask errors in data transmission and storage. Inherent in the use of JIAWG

modules for the General Dynanfics architecture is the use of a Hanuning code to

correct or mask transmission errors on the PI bus. This is the only specific use of

error correction techniques that can be identified for this architecture. Other areas
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wheretile useof error correctionhasbeensuggestedbut not specifiedinclude the
useof non-specificerror correctioncoding for the LDL cross-channeldata [inks,
error correctionfor memorybit errorsand allocationof sparetransmissionwindows
in tile TDPA template for retransmissionof messagesthat previouslycontained

errors. Presumably, software would have to be included to respond to message

errors with an appropriate retry. Consideration should be given to the use of

memory error correction in the self-checking processor/memory module. The

purpose would be to reduce the frequency at which the self-checking logic pulls the

SCP off-line due to soft errors in the memories.

5.2.3. Boeing Fault Masking

Input Data Consistency and Output Voting - The fault tolerance module

(FTM) of the Boeing architecture implements the voting and synchronization

functions. It will be composed of a 1750A processor, a 256K memory, a

maintenance controller and interface, a Pl bus interface, a switched or voted

redundant system bus interface and an inter-channel conmmnication interface with

voter and synchronization logic. Boeing also indicates that rigorous fault tolerance

concepts will be used. Boeing defines the degree of electrical isolation that is

expected to constitute a physical fault containment region. This is the extent of the

functionality and performance specifications for the FTM. As with the General

Dynamics architecture, the specification of essential features is incomplete and the

potential for the architecture to achieve expected fault tolerance cannot be

evaluated. Among the essential characteristics which should be specified and

evaluated before development proceeds are: 1) the nominal skew expected between

redundant channels, 2) the fault containment characteristics of the FTM, 3) the

behavior of the FTM when a channel fails to deliver data to be voted, 4) if and how

faulty channels are excluded from voting, 5) if and how a string whose data is in

minority is reported, 6) if and how the voter and error report logic are checked for

faults during operation, 7) the mechanism for distributing consistent simplex data,

8) the connectivity of the inter-channel communication paths, 9) the bandwidth of

the inter-channel communication paths and associated voting and error reporting

functions, and 10) if and how fault masking is provided for system bus

communications between processing sites. The design of the switched or voted

system bus interface is not indicated. While the interface can provide masking of

errors in intercomputer conununications, unless designed properly it has the

potential to pernfit malicious behavior in one processing channel to disrupt the
other redundant channels.

Synchronization - All redundant channels within a processor will be powered-up
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together at tile start of power-up. Followingself-testof all of the cha,mels,tile
individual channels will be synchronized to each other via the FTM hardware and

self-test will then be conducted at the node level. Task or frame level

synchronization will be used. A real-time clock ill the Guidance, Navigation aud

Coutrol (GN&C) processor will be used as the reference to which all elements

synchronize. A spare processor will be capable of taking over these functions if the

GN&C processor fails. Real-time clock synchronization will control drift.

Without more complete specification of the synchronization process, the capability

to establish, maintain and re-establish, if ,mcessary, a bounded timing skew across

redu,ldant channels cannot be evaluated. Further, the fault tolerance of this

function iu the presence of arbitrary failures cannot be assessed.

Error Correction Features - Specific error correction techniques other than

redundant channel voting identified for the Boeing architecture include the error

correction coding inherent in the JIAWG PI bus interfaces and the error correction

coding present in the JIAWG bulk memory modules. Retry of transmissions for

messages with errors is specified for data busses and backplanes.

5.2.4. AIPS Fault Masking

Data consistency and output voting is provided in the AIPS FTP via the

communicator/i,lterstage hardware. This hardware has the connectivity and

physical fault containment regions necessary to provide for distribution of consistent

data in the presence of arbitrary failures. It is one-fault Byzantine resilient in a

triplex configuration and two-fault resilient in a quadruplex configuration. The

hardware provides for bit-for-bit majority voting, reporting of errors iu the voting

process and the capability to block faulty processing chatmels from the vote process.

The function has been implemented and tested extensively in a series of

implementations.

Error reporting circuits and voter logic are tested exhaustively by a diagnostic test

program executing on a time available basis in the FTP. Data paths and control

circuit logic are tested through normal use of the hardware and through a special

test executed at the beginning of each processing frame.

The minimum time required to vote a word is 2.5 microseconds in the

proof-of-concept model of the FTP. The fault-tolerant clock used to cycle the voter

has a 5 microsecond period and is controlled by redundant digital control loops

which can adjust the fault-tolerant clock skews by 125 nanoseconds every

fault-tolerant clock period. The technology used for MPRAS should permit these

parameters to be reduced.
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Upon start-up and for resynchronization,operationMredundant FTP channelsare
synchronized to an instruction interval and to identical hardware states by a

software service. Initial synchronization is attained by exchanging unique words via

the conmmnicator/interstage hardware.

Conmmnications between FTP's is provided via a threedayer IC network. FTP

channels can receive on all three network layers either by voting data received on all

layers or by selecting data from a single layer. FTP channels can transmit on only

one layer of the network. Transmission errors for data transmitted on all layers are

masked by a voter in the FTP 1C interface. Data transmitted on only one layer are

received by all channels in the receiving FTP. A consistent copy is formed by voting

the received copies via the communicator/interstage hardware. Error correction of

redundant memory values via a memory scrub program that executes as a

background self-test corrects for soft memory errors and prevents the accumulation

of these errors over long periods of operation. This mechanism makes use of the

voter hardware to find and isolate these errors.

5.3. Fault Detection and Diagnosis

Fault detection relies on the provision and use of redundant information or resources

to detect the faults and errors caused by failures. The N-modular redundancy with

voting strategies that are being used in the proposed MPRAS architectures provide

the basis for fault detection, provided that they are augmented with appropriate

and effective fault diagnostics. The major issues are diagnosability and coverage.

Also, as for fault masking, for N-modular redundancy with voting to be effective,

the following conditions are necessary:

1. The redundant processors have to be synchronized to a known and bounded
skew.

2. Bitwise identical inputs must be provided to the redundant processors.

3. A mechanism to detect bitwise disagreement between redundant processors
must be used.

Although the fault masking provided by majority voting is sufficient to provide fault

tolerance, additional diagnostic and fault detection capabilities may be required to

support redundancy management requirements, including notification of fault
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occurrenceand loc;_tionof tile fault to somefinite numberof possiblefailure
Ioca.tious.Thesetwo functionsareessentialif timely reconfigurationis neededto
maintain the levelof redundancyafter the occurrenceof failuresor to removefaulty
components.

Eachof the proposedMPRAS architecturesprovideerror detectionand
identification capabilitiesbeyondthat providedvia the majority voting mechanisms.
Thosecapabilitiesexcludingthe built-in-test featureswhich support thorough
assemblyand prelaunchreadinesstestingarediscussedin the following paragraphs.

GeneralDynamicsrequirementscall for the useof "state-of-the-arthardwareand
softwaretechniquesto establisha high levelof systemtoleranceto both hardware
and softwareerrors." "The ability to detect,corrector compensatefor soft errors
induced by transient hardwareor environmentalanomaliesis required."

Specificerror detectioncapabilitiesthat are inherent in the useof JIAWG conunon
modulesand would beapplicableto the GeneralDynanficsarchitectureare: 1) error
detectionand correction in bulk memories,2) memoryparity checking,and 3) error
detectionand correctionon the PI bus interface.

The primary error detectionmethod put forth for the systembus is the useof an
extra bus for eachredundantbuschannelalongwith self-checkingbus interface
modules.This would requirea bus interfacemodule that differs from the JIAWG
standard interface module. If this approachis not used,the extra busseswould be
usedas sparesand unspecifiederror checkingwordswouldbe includedand tested
for eachmessagetransmitted.

The primary error checkingmechanismproposedfor the GeneralDynamics
architecture is a processor/memorymodulewhich usesthe self-checkingpair concept
to achievehigh coverageand rapid detectionof errors. Self-checkingpairs (SCP's)
areusedin all redundant channelsto provide rapid fault detection,isolation and
containment at the module level. The use of SCP's simplify the diagnostics that are

necessary to perform these functions and thereby speed up the recovery process so

that spare modules can be used to maintain the desired redundancy levels after

multiple failures. However, the SCP's still need to execute diagnostic sequences to

check the comparator and to determine whether faults are transient or permanent.

Each SCP consists of 2 lock-step processors, a fault monitor module and a PI bus

interface. A self-checking comparator is part of the fault monitor. The self-checking

monitor checks itself while it checks the processor outputs. It also checks that

processor clocks are correct and indicated an error if they are not. A self-checking

fault management sequencer in the fault monitor module disconnects the SCP from

the system bus when an error is detected, diagnoses transient faults and allows the

SCP to re-establish normal system operation when the fault is diagnosed to be
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transient. The processorsthat makeup the SCP are run in lock-step.

Tile self-checkingfault managementsequencerin tile fault monitor moduleof tlle
SCP is a simpledevicecomprisingcounters and combinational logic. If processor

disagreement occurs or the self-checking comparator finds an internal fault, the

sequencer transitions from the "good" state to the "abort" state. In tile abort state,

it signals an SCP fault and resets the processors. The external fault signal is
transmitted over the Test and Maintenance Bus and PI bus to ensure that errors

affecting the transnfission or generation logic are also detected. Then the sequencer

unconditionally transitions to tile "disable Pl bus" state, where SCP outputs to the

Pl bus are disabled. PI bus outputs were left enabled in "abort" state to allow tile

sequencer to signal the malfunction. Processor resets are released in the disable PI

bus state to allow them to execute a diagnostic sequence. Tile diagnostic sequence

exercises all of the SCP module hardware including the processors and local

memory. The processors send a command to tile sequencer when they have

successfully completed tile diagnostic sequence. The sequencer responds by

transitioning to "re-enable" state to allow tile SCP module to conununicate over the

PI bus. The sequencer then transitions back to the "good" state which allows the

SC'P module to be reused as a spare. The recovery process requires the processor to

obtain software state and database information from one of the active processors.

This would normally be performed after the module is brought online as an active

module. The sequencer transitions to tile "crowbar" state which permanently

disables the SCP module if during the "disable PI bus" state 1) the processors

disagree, 2) the check circuit has an internal fault, 3) there is a sequencer fault

during the diagnostic period, or 4) the processors fail to complete the diagnostics

within a specified period of time. The sequencer can permanently disable the

module either by continuously maintaining the reset signal true, or by causing

power to be removed from the module.

The use of SCP's has the following potential advantages:

1. Processors do not need to send "keep alive" signals to the fault monitor logic.

2. Eliminates need for detailed fault analysis for the processors since all non

common cause faults will result in processor disagreements.

3. Inunediate disabling of outputs eliminates possibility that errors will

propagate.

4. Reuse of SCP if fault is determined to be transient.

5. Potential higher coverage and reduced latency for faults.
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The use of SCP's has tlle following liabilities:

I. Comparator is a single-point failure; careful design is required for reliability.

2. They are potentially more prone to common mode failures.

3. The fact that the checker exists in the same fault containment region as the

devices being checked makes it difficult to guarantee independence of failure
modes.

4. SCP failure rates are at least double single processor failure rates.

Specific error detection capabilities that are inherent in the use of JIAWG connnon

modules and which are applicable to the Boeing architecture are: 1) error detection

and correction in bulk memories, 2) memory parity checking, and 3) error detection

and correction on the PI bus interface. In addition, Boeing indicates the inclusion of

error checking words for all message transmissions on various system busses. The

Boeing specifications present a relatively thorough analysis of a broad range of faults

within their architecture and indicate how each fault is covered by the various error

detection mechanisms. Fault and error assessment processing will be implemented

in the Boeing FTM. The Boeing specifications call for each processing site to carry

out a self test on power up to establish its readiness to begin processing.

Fault identification algorithms for both the General Dynamics and Boeing

architectures cannot be specified until their designs progress further. However,

certain important characteristics such as the methods for assuring consistent error

report inputs to the fault diagnosis process and for assuring that the non faulty

channels arrive at the same diagnosis should be, but have not been, specified.

Extensive error detection mechanisms have been implemented for the AIPS

proof-of-concept system. Each processor detects the foUowing exception errors: 1)

bus errors, 2) address errors, 3) illegal instruction errors, 4) arithmetic traps, and 5)

spurious interrupts. A watch dog timer is used to detect processors that fail to

complete operation sequences. The intercomputer and input/output networks

detect protocol errors, data errors and time-outs. In addition to the detection of

data errors on network co_mnunication paths, messages contain extra error check

words that detect data errors in messages after message data has been handled

within FTP memories. Voters are used to mask errors on intercomputer

communications. On-line diagnostic self-test programs are executed during available

processing intervals to detect faults in the voter logic, error reporting circuits, data
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memory, program memory, the real-time clock and the monitor interlock. Presence

tests are executed every processing frame prior to application processing to establish
which channels of each FTP are available. In addition to these error detection

mechanisnls, fault diagnosis algorithms have been implemented to analyze these

error reports along with errors detected by the voters to identify faulty elements.

Note that proper fault diagnosis for a redundant system requires that all

operational channels arrive at tile same diagnosis. Consequently, the AIPS uses tile

data exchange mechanism to distribute to all channels the error reports from each

channel so that consistent error report inputs can be used for diagnosis in each

channel. Testing has been conducted to determine the correctness and effectiveness

of these algorithms. Test programs which exercise the spare links and nodes in the

intercomputer and I/O networks are executed to detect failure in these spare

components. FTP's also execute a full self-test sequence following power up.

5.4. Fault Recovery

Recovery from faults in the AIPS architecture will be triggered by the fault

detection and identification naechanisms discussed in the previous section. Initial

response to all diagnosed channel faults is to block the faulty channel from voting.

Following this, attempts are made to recover this channel. A channel is considered

recovered if it can be resynchronized and state aligned to the operational channels

and if there are no data exchange voting errors being produced in the recovering

channel after a suitable period following resynchronization and state alignment.

Faults detected and identified for the AIPS I/O networks and IC network will cause

the networks to be reconfigured around the faulty component using spare
communication links and nodes.

Since network reconfiguration and channel recovery require substantial time to

complete, the AIPS architecture reconmmnded for MPRAS will only make use of

these fault recovery features during the pre-launch period. During the launch phase

only fault masking and the capability to block channels diagnosed as faulty from the

voting process will be in force.

Boeing has not specified or described the error diagnosis, reconfiguration, transient

recovery, resynchronization and state alignment processes which are essential for

fault recovery. Critical aspects of these processes need to be specified before their

adequacy can be asse.ssed and before the design can be considered to represent a

credible fault-tolerant system.

The basic recovery process for the General Dynamics SCP was described in the

previous section. In this architecture, recovery occurs at the subsystem level and
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the goal is for rapid in-flight recover.Tile capability to properlyand rapidly
introduce a spareSCP into tile channelor to recoverthe faulty SCP from a
transient dependsupon self-test,synchronization,state recoveryand state
alignment processes.Theseprocessesmust bespecifiedand analyzediLLmoredetail
beforetheir feasibility and adequacycan beestablished.Of particular concern
shouldbe the time requiredto align the state of the SCPmemorieswith that of the
other channels. This time could well exceed the specified recovery time.

The rapid in-flight recovery requirement specified by General Dynamics and Boeing

is a major contrast to the in-flight fault masking approach taken for the AIPS. Since

this requirement can have a substantial effect on the feasibility, cost and

development risk associated with the MPRAS architectures and could be a

discriminate between architectures, the need for this requirement must be resolved.

5.5. Redundancy and Sparing

The redundancy of the General Dynamics architecture can support up to

quadruplex configurations. Triplex has been recommended as the baseline

configuration. Due to the "two-failure" requirement for safety, launch will not be

permitted if including the failure of spares the system degrades below the triplex

level during pre-launch. The reconunended redundancy for both the Boeing and

AIPS architectures is quadruplex. These systems have to degrade from quadruplex

to duplex during pre-launch before launch would be aborted.

Sparing in the General Dynamics architecture includes a spare PI bus for each

backplane in a redundant channel, a spare system bus for each redundant channel,

provisions for spare processors in redundant channels and the capability to provide

spare processing sites at the system level. Spare processing sites call be used to

replace any processing sites that are not used as an RDI; that is, is not connected to

sensors or actuators.

Sparing for the Boeing arcbitecture includes a spare PI bus for each backplane ill a

redundant channel and pooled system level spare processing sites. Due to the Boeing

core processing and local signal conditioner topology which permits all processing

sites to have access to all sensors and actuators, the spare processing site can be

used to replace any processing site. AIPS permits sparing at the fault masking

group or processing site level. The capability of tbe spare to replace a fault masking

group depends upon whether it can be given access to the I/O devices (sensors and

actuators) connected to the failed site. Access to an I/O network requires an IOS

module. Thus, sparing will be linfited to the number of distinct I/O networks for

which distinct lOS modules are provided in the spare. If a system has a number of
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I/0 networks, sparing could be constrained. AIPS building blocks also provide the

opportunity to include spare communication links and circuit switched network
nodes within tile I/0 and IC networks. These spare components can be used to

reconfigure these network components to bypass faulty network components.
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6. SUMMARY AND CONCLUSIONS

The following paragraphs sununarize the conclusions that have been drawn

regarding the MPRAS architectures.

Reliability - Reliability projections were made by Boeing for recoverable core

avionics over multiple nfissions. In addition, Draper Laboratory used mid 80's

failure rates to evaluate the reliability of an AIPS core avionics for a nfission

consisting of a pre-launch and launch phases. No system reliability projections were

made by General Dynanfics for their architecture. None of the contractors

conducted reliability analyses of the sensor/actuator colmnunications networks.

Projections indicate that this area has a substantial impact on MPRAS reliability

and could cause overall MPRAS reliability to fall short of objectives. In particular,

the triple redundant General Dynamics sensor acquisition network topology could

fall far short of desired goals. The reliability of the sensor/actuator communications
hardware should be considered a risk area for all MPRAS architectures.

The major factor impacting reliability projections for MPRAS is failure rate

assumed for transient failures under both launch and pre-launch conditions.

Establishing credible transient failure rates should be a priority item for MPRAS

development. Otherwise, the system could suffer the costs of overdesign or suffer the

costs of failure to fulfill mission requirements.

No reliability analyses of the built-in-test features were reported for the MPRAS

architectures. The substantial built-in-test features required to enable cost savings

in vehicle assembly, integration, and launch operations require sufficient hardware

that the reliability of this hardware could adversely affect MPRAS reliability. The

design of the testability features should be reviewed with the goal of improving

reliability of the overall test system. The effectiveness of the entire error detection

and isolation features of the MPRAS architectures has been shown to be a critical

parameter for mission success and as such should be an area for scrutiny throughout

the MPRAS development.

Testability - Both the General Dynaufics and Boeing testability design

specifications are at a level consistent with the development stage and are

appropriate for the application. Both designs provide for off-line chip level

built-in-test circuitry appropriate for reducing the otherwise enormous testing task

presented by complex systems implemented with VLSI technology. The Boeing

development is more advanced in specifying the testability features for the

sensor/actuator signal conditioning/interface elements. The Boeing design provides

for a test and maintenance bus within an avionics enclosure and provides for an

external test and maintenance connection port on each avionics enclosure but does
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not carry a dedicated test and maintenance bus to all enclosures throughout tile

vehicle. The General Dynanfics design is based on a dedicated test and maintenance

bus that is provided to each avionics processing enclosure. The bus can provide

access to points within the system that should result in better system testability.

Information regarding the testability of tile AIPS architecture for tile projected

MPRAS application was not available. However, the lack of chip level built-in-test

capability appropriate for VLSI complexity in the AIPS proof-of-concept system is a

significant disadvantage for assembly and pre-launch testing for MPRAS.

Because of the importance of testability to enabling costs savings in launch vehicle

assembly, test, and operations; competitive MPRAS architectur_ should be

carefully scrutinized with respect to adequacy and cost effectiveness. Due to the

large amount of hardware required for an MPRAS application, the reliability of the

associated built-in-test and maintenance hardware is a potential risk area that must

be addressed for all architectures.

Performance - Because there are substantial differences in projected performance

requirements for certain functions given in the three application descriptions,

conclusions regarding the adequacy of architecture performance characteristics are

subject to errors. Improved application descriptions and performance requirements

should be developed before substantial MPRAS development is undertaken. Areas

of most concern are propulsion control and adaptive GN&C computation and

communication resource requirements.

lntercomputer and sensor/actuator communications are judged to represent the

greatest performance risk for each architecture. The overall effective colmnunication

bandwidth which includes the effect of software processing for high coverage error

detection and message delivery, as well as the cable bandwidth, is the relevant

performance parameter of interest. The potential for efficient, low-overhead

communications and task scheduling provided by the TDPA concept and the

distributed sensor data voting topology are considered performance advantages for

the General Dynamics architecture. Even though the AIPS conmmnications

mechanisms are software intensive, the fact that they have been implemented, that

their message delivery times are known, and that the required improvement of a

factor of l0 to 20 is feasible using projected technology, reduces the risk for AIPS

performance. Due to the centralized topology of Boeing architecture, including the

more centralized sensor data voting characteristics, it is the architecture that would

be most affected by the need for higher throughput requirements such as those put

forth for the propulsion control functions. Further, the topology seems to constrain

the location of time-critical sensors to the PA module. This would preclude sensors

for fuel level and structures which must be distributed throughout the vehicle and

which are expected to be used for adaptive GN&C functions from being handled by

125



tile time-critical I/O mechanisms. Thus, tile Boeing architecture development would

carry a high performance risk.

Fault Tolerance - As indicated in Chapter 5, the fault tolerance features of the

Boeing and General Dynamics architectures are insufficiently specified or reported

to deternfiue their adequacy or feasibility. For each architec.ture, numerous critical

fault det_tion, fault diagnosis, fault recovery, fault masking and redundancy

management characteristics must be defined before adequacy, feasibility, and

development risk can be deternfined or before these designs can be represented as
credible candidates for a fault-tolerant architecture.

The AIPS fault tolerance features are well-established and have been implenlented

in a series of development systems. These design features have undergone extensive

analysis and testing. The verification and validation of the AIPS FTP and its

associated local system service software has received the most attention. This

process continues. Due to the advanced state of development, the AIPS fault

tolerance concepts have by far the lowest technical and development risks for
MPRAS.

The General Dynamics proposed requirement for rapid in-flight recovery can have a

major impact on the MPRAS fault tolerance requirements. If this proposed

requirement is in fact necessary, all architectures including AIPS will be

significantly impacted. If, however, in-flight fault masking is all that is required, the

proposed non-reconfiguring AIPS architecture can be used.

Susceptibility of multipath systems to the common mode (non-independent) failure

is an obstacle for the acceptance of such systems for applications such as launch

vehicle avionics. Additional work must be done to determine if this threat is

significant and to devise ways to reduce this threat or its effect on systems.

Both Boeing and General Dynamics indicate that the SDIO BM/C 3 working group

reliable system design framework will be used to develop their architectures. If this

framework is augmented by appropriate methods and carried out carefully, it should

be sufficient to reduce development and technical risks.

The AIPS application development concept is built on having validated "building

blocks" and appropriate application guidelines such that configuring an application

from them will require that only the application be validated. Substantial effort has

been directed toward this goal and validation is relatively advanced. However, total

architecture validation has not been accomplished nor has the concept of separating

architecture and application validation been demonstrated. AIPS will have

development support tools and an extensive performance information base which

can be used to reduce development risks.

The General Dynamics TDPA concept introduces deterministic application tinting
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which should greatly reduce the application validation or revalidation requirements

and costs.

Common Modules and Adherence to Standards - Both General Dynan_ics

and Boeing Aerospace have set requirements to adhere to or meet a comprehensive

list of standards for materials, workmanship, processes, packaging, practices,

environment factors and maintainability..IlAWG standard line replaceable module

sizes and standard connectors are specified for packaging. Standard interfaces such

as PI Bus, TM Bus, MIL-STD-1773 and the High Speed Data Bus are used.

Conm_on .]IAWG modules or upgraded JIAWG modules are being used to the

extent possible. The common avionics processor ('AP-:32 and the MIL-STD-1750

instruction architecture are also specified. M1L-STD- 1815 Ada programnfing

language is naturally dictated.

Based on the adherence to these standards and "the lnaxinlum possible use of .]IAWG

common modules, it is indicated that costs will be reduced. Acquisition costs are

reduced because high production conunon modules will cost less. Logistics costs will

be reduced because of the adherence to standards..]lAW(; module acquisition costs

have been estimated at between $10 thousand and $15 thousand for typical modules.

The costs for upgraded or new modules have not been formally reported but

informal speculation sets these costs as high as $20 thousand to $40 thousand. No

life-cycle cost reports addressing the avionics were available for the MPRAS Part 1.

Boeing Aerospace specifications called for the use of .JIAWG modules. General

Dynamics on the other hand indicated that the JIAWG modules would have to be

upgraded to m_t launch vehicle specifications. The primary question is how much

of the cost advantage for common modules is lost due to upgraded repackaging.

That is, when is a common module no longer a conunon module? Both Boeing and

General Dynamics specify new modules such as sensor/actuator interfaces, fault

tolerance modules, self-checking processor module and high throughput processors.

These modules would not necessarily be used in programs other than ALS. There

are about as many unique module types as there are common module types for both

architectures and the total number of unique modules used in applications seems to

equal or dominate the total number of conunon modules used.

A significant difference in the Boeing Aerospace design and the General Dynanfics

design is the use of liquid cooling. General Dynamics proposes to keep module

power dissipation to between 10 and 15 watts so that the cost of liquid cooling can

be avoided. Since current JIAWG modules such as a 4 MIP processor requires 35-40

watts and since 10 MIP self-checking pair processor modules are proposed, the

feasibility of not having liquid cooling must be demonstrated.

The General Dynamics sensor/actuator conditioning and interface modules for
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MPRAS are morecompletelyspecified,while the Boeingsensor/actuator
conditioning and interface module test features are more advanced.

. .

hfformation as to standards and common module usage by AIPS was not available

for this review. If the costs savings associated with common modules and adherence

to standards hold for the Boeing and the General Dynamics architecture, it would

be difficult for AIPS to compete on recurring life cycle costs without using conunon

modules and adhering to supported standards.
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Functional Decomposition of
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Functional Decomposition of

General Dynamics MPRAS Requirements
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Functional Decomposition of

Martin Marietta MPRAS Requirements
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APPENDIX B

OS PERFORMANCE MODELING FOR
DISTRIBUTED REAL-TIME SYSTEMS





Introduction

Ill designing and developing a highly reliable and fault-tolerant system, tile use of

performance modeling at various stages of the process may provide useful

itlformation to system developers. This task investigates issues on tlle role of

performance modeling in an integrated design environment. In particular, it

examines nlodeling abstractions and modeling fidelity issues for incorporating

operating systenl (OS) characteristics into system performance nlodels. (liven the

application of interest, the work concentrates on real-time distributed operating

systems rather than general purpose systems.

Specific goals and objectives were to identify useful performance abstractions for

operating systems that maintain modeling fidelity and to demonstrate their use in a

simple application model.

Performance Modeling

In keeping with good engineering practice, the design process is multiply and

recursively iterative, hi this context, the design process proceeds from the abstract

to the specific. Performance modeling at each stage and substage Call help guide the

decomposition process further.

Performance can mean different things at different levels of abstraction. Higher

levels of abstraction provide relatively crude measures, while lower levels can provide

more accurate measures, as shown by the modeling experiments described below.

The most important question for any modeling effort is clear: how can lower level

details be abstracted without losing too much fidelity in the model? In other words,

what can be abstracted and what cannot? To some extent, the answer is dependent

upon the importance of the issues under experimental study, i.e., the dependent

variables for the modeling effort, relative to the particular system.

Since performance is only one of the many design requirements a system must meet,

modeling trade-offs need to be made. One such trade-off is modeling fidelity versus

cost. High fidelity models may be expected to give more accurate results, but may

be more costly to develop. Ideally, system modeling should allow developers to

select a level of detail appropriate to their particular needs and constraints.

In the reahn of performance modeling, the partitioning of the system is a very

important issue. Modeling the application, the OS system services, the OS task

controls, or the architecture and its interconnection network, requires different

perspectives on performance issues. The performance attributes at each level of
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Most abstract Performance
Attributes

Service Time Estimate
Data Flow In
Data Flow Out
Memory Requirements

Intermediate

Least abstract

Calling Sequence
Pseudocode
Language Selection

Detailed timing
Instruction counts

Task Do-it is
Begin

Figure 15. Application Software

modeling abstraction vary according to the system element being modeled.

Suppose that a model of operating system abstractions for task control is to be

created. The operating system would decide when tasks get executed, blocked, or

suspended. Performance metrics, such as processor utilization and task response

times (which depend on OS scheduling policy), can be used. Some task control

mechanisms are relatively simple and can be modeled using performance simulation

tools like ADAS, such as fixed schedules and preemptive priority. It is also true that

task control can be very complex to model, such as when modeling the Ada tasking

semantics since so much is hidden by the language and its run-time system.

If application software is being modeled, the most abstract view nfight use an

estimate of service time, examine data flow in and out, and consider memory

requirements. An intermediate level of abstraction might consider calling sequences

and pseudocode for specific pieces of the algorithm being modeled. The most

granular and least abstracted view might model detailed tinting constraints and

instruction counts. Figure 15 illustrates this point.



Table 1. OperatingSystemsAbstractionsfor SystemServices
Levelof Abstraction Performance Attribute

Most abstract

Intermediate level

Lower level

Least abstract

% Overhead for task

# OS calls x time

per call by a task

Dynaanic model of OS

services (e.g., shared

memory contention)

Actual run time environment

If operating system services are being modeled, the most abstract view might

estimate the percentage of overhead for a task service. An intermediate might

evaluate performance in terms of tile number of OS calls multiplied by the total

amount of time per call by a task. A further degree of refinement in detail aright

model shared memory contention. Table 1 illustrates this point.

If interprocessor communication is being modeled, the most abstract view aright

model communication in terms of a fixed size delay. An intermediate level might

take the model further and deternfine the delay based on channel bandwidth, size of

data message, and overhead related to a network packet. Even more detail could be

achieved by modeling the changes in delay dynanfically. The least abstracted view

would have detailed tinfings based on all of the factors that enter the transmission

process. Figure 16 illustrates this point.

In summary, useful performance abstractions exist for applications, operating

systems, and architecture modeling. In the case of operating system control and

interprocess conununication (the subjects of the experiments described below), some

control and conununication semantics can be modeled relatively easily. More

complex task control semantics, such as with Ada tasking, are more difficult to
model.
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Level of Abstraction

Most abstract

Intermediate levels

Least abstract

Performance
Atlrlbute

Representation

Fixed Delay
_' Delay

Delay is function
of channel bandwidth,
amount of data, and
packet overhead

Dynamic mode4
with channel
semantics

(

........................... P2I

PI - Bus semantics

Detailed communication
Umlngs

ISA/RTL simulation models in VHDL

Figure 16. Interprocessor Communication
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ADAS Model with

AbstractOS Model

__ ADAS Model
with More

Detailed OS Model

P

_.!Ac,ua,Reso,,sI coo.r.]
Figure 17. Demonstration

Experiment

This experiment illustrates the relationship of model fidelity to levels of abstraction.

It shows that the addition of details to the model produces simulation results that

have increasing degrees of fidelity. The experiment was constructed so that

performance measures taken from models containing operating system and

communication abstractions could be compared to performance measures taken

from an actual prototypical implementation. The models were constructed and

sinmlated using ADAS. They consisted of one very abstract model and a second

more detailed model, which allowed for differing degrees of abstraction in functional

simulation with the same topographical model. Figure 17 illustrates the

experimental paradigm.

Description

The system application chosen for this experiment was a distributed client-server

model. A single client module was included, with six server modules to provide

generic services and a single Ethernet-like network for communication among

processes. Each functional component was conceived to be executing on separate

hardware processors. In simulation, the functional modules were utilizing their own

processing elements (PEs), while the network modules were viewed as competing for
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the Ethernet transmission medium.

As mentioned above, the ADAS models included two basic levels of abstraction, a

high level of abstraction and a more detailed level, with this second level being

simulated in two modes of increasing detail. The models included operating system
abstractions and conununication abstractions.

With the ADAS performance and functional modeling tool, node firing delays (or

the amount of simulated execution time a process uses) can be random numbers

that are computed by user-defined routines during functional simulation. Random

numbers are often required in simulations to model unpredictable events, such as

arrival rates of requests for service and random service times.

The use of stochastic attributes to represent random events in the modeling process

enhances fidelity. Random numbers are usually generated from distributions that

attempt to model real-world behavior, such as Poisson distributions for queuing

models, exponential and Weibull distributions for failure models, and uniform

distributions for service time modeling. A particular distribution and its parameters

are chosen for the application based on experimental observations and aSSulnptions

about the processes involved in the experiment. Simulations should then be carried

out until performance measures stabilize. It is difficult to predict a priori how long a

simulation should run; usually the experimenter should decide based on modeling

experience and knowledge of the particular modeling tool.

This experiment examined average network throughput, client utilization of its

processor during simulation run t and server utilizations of their separate processors

during simulation run. In this context, throughput was considered to be the total

amount of data that passed out of the network nodes in a given second of simulation

time. Client and server utilizations were considered to be measures of the amount of

simulation time, as a percentage of the total sinmlation time, that the individual

hardware PEs were busy.

Independent Variables

This experiment used three independent variables. They were the client execution

time, the server execution time, and the size of the user message. The client

execution time was based on measured values from an actual prototype

implementation of the application. Although it turned out to be a very small

amount of time, 500 microseconds, a greater time would not have affected the

essential problem being modeled. It was statically set, and remained the same, for
all simulation runs.

The server execution times were chosen to be uniformly distributed about a mean
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value. The mean value was statically set, prior to each simulation run, with the

uniform distribution being calculated dynamically for each server node firing. The

mean times varied from 500 microseconds to 1 second.

User messages were varied from 64 bytes to :32 kilobytes, with the specific size

statically set prior to each set of simulation runs (ten settings). Message size was

incorporated directly into the network simulation models as network node firing

delays in the first model, and as production and consumption of simulation tokens

in the second model.

Sets of simulation runs were carried out, with each of the ten user message sizes

being held constant for all of the twelve server mean values, resulting in 120 data

points.

Model One

Model One was the most abstract and coarsely-grained of the experimental models.

It assumed that the execution times for both the client and server models

encompassed the application functions and system networking functions, with

additional network functions modeled as part of the network nodes. Again, firing

delays for the node execution times were taken from an actual prototype application

implemen t at ion.

Table 2 shows the message cycle times as actually measured in a prototype

implementation. The times shown are the average times taken for a message to be

read, processed, and for anew message to be sent. Since process time for the

application was known to be very small, the largest portion of the times represents

message overhead for reading and writing.

Table 3 shows the firing delays used in Model 1 to sinmlate the passing of messages,

and application code execution times. The server delay was incremented by a

reading and writing cost constant for each message size. The network delay was

estimated to be a fraction of the message size (in bits).

This model assumed that transmission time across the network was a function of

network bandwidth and the length of a user message. The network node firing delay

was set to be a function of the size of the user message as a result of this

assumption. The total user message was assumed to be transmitted and received

without being broken down into network transmission packets. Coarse-grained
contention for network services was modeled in terms of the network nodes

competing for the network hardware resource. Figure 18 illustrates the ADAS

software graph of Model One.
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MessageSize Delay
(bytes) (msec)

64 6.737

128 6.791

256 7.023

512 7.533

1024 8.870

2048 ]2.258

4096 17.619

8192 26.961

16384 53.356

32768 97.364

Table 2. Measured Delays for Message Cycle

Message Size Client Delay Server Delay Net Delay

(bytes) (msec) (msec) (msec)

64

128

256

512

1024

2048

4096

8192

16384

32768

3677

3713

3868

4208

5099

6544

9304

13090

32469

46187

3678 +

3713 +

3868 +

4208 +

5099 +

6544 +

random number

random number

random number

random number

random number

random number

9304 + random number

13090 + random number

32469 + random number

46187 + random number

0.0512

0.1024

0.2048

0.4096

0.8192

1.6384

3.2768

6.5536

13.1072

26.2144

Table 3. Component Delays for Model 1
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Figure 18. Model One
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Model Two

Model Two represented a less abstract model with tile introduction of two finer

levels of detail. Ill these two increasingly detailed views of tile system, the client and

server modules were decomposed into application functions and I/O functions. This

more closely represents tile way that tile operating system and its network protocol

software actually function in relationship to ally specific application. The ADAS

graph topography was hierarchical in its decomposition of the model, and it was the

same for both versions of Model Two. Figures 19, 20, 21, and 22 illustrate the

ADAS software graph hierarchy for the Model Two topography.

Model Two -- First Version

The first version of Model Two made a similar assumption about user message

transmission as Model One. Ill both cases the total user message was transmitted

and received as a unit. However, in tiffs case, the transmission time was a function

of the number of Ethernet packets required for a particular message size (packet

sizes ranging from 64 bytes to 1024 bytes, even though Ethernet packets can range

up to 1518 bytes). Based on the prototype implementation, the amount of Ethernet

transmission time was calculated (exclusive of operating system network services)

for messages of different sizes. The firing delay for the network nodes was statically

calculated in terms of this transmission time, and the simulations were run using

this calculation.

Table 4 shows tile component delays for Model 2 Version 1. The client and sewer

nodes have been decomposed to show the actual reading and writing of messages.

The times again .were based on the results obtained from the prototype

implementation for each message size. The next delay was based message size

relative to maximum network bandwidth.

This version represented a more detailed and accurate view of data transmission in

the system. Message transmission interleaving was again modeled in terms of

contention for the Ethernet hardware resource. The next version refined this model

further.

Model Two -- Second Version

Using the same graph hierarchy as the first version of Model Two, the second

version altered the network model assumptions. In this case, the user messages were

decomposed into Ethernet packets for transmission, each packet no larger than

1024 bytes (arbitrarily chosen for modehng convenience). A single token was used to
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Message Size Client Read Client Write Server Read

(bytes) (msec) (msec) (msec)

Server Write Net

(msec) (msec)

64 1672 1672 1672 1672 58

128 1690 1690 1690 1690 109

256 1767 1767 1767 1767 211

512 1937 1937 1937 1937 416

1024 2383 2383 2383 2383 826

2048 3105 3105 3105 3105 1652

4096 4485 4485 4485 4485 3304

8192 6378 6378 6378 6378 6608

16384 16068 16068 16068 16068 132

32768 22927 22927 22927 22927 26432

Table 4. Component Delays for Model 2 Version 1

model a single packet of user message data. (Note: Recall that in Model One and

the first version of Model Two the entire user message was sent and received as a

single token.) The total user message thus consisted of the number of token packets

required to send the message by the actual inaplementation. Consumption and

production of tokens from and to network nodes were scaled to the size of the user

message (which was statically set for the entire sinmlation run). The client-read

nodes and the server-read nodes consumed the number of tokens representing a full

user message. The client-write node and the server-write nodes produced the

number of tokens representing a full user message. The network nodes could only

consume and produce a single token. Contention for the network hardware under

these conditions simulated the interleaving of packets and the consequences of

message delays in transmission for the application software in an actual application.

Each network node execution time (firing delay) was based on a single packer's
transmission costs.

With the modification of the produces and consumes relative to message

transmission and the single token as single packet modeling assumption, this version

of Model Two further refines the application-OS-network interactions.

Table 5 show the most granular model, Model 2 Version 2. The client and sewer

nodes were again decomposed into reading and writing components with Airing

delay times taken from the prototype implementation. The net delays are also the

same as in Version 1, up to the 2048 bytes message size. In Version 2 tokens
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represent packets of data. The model uses a maximmn packet size of 1024 bytes.

Larger messages require more packets. The net node is modeled to only transfer a

packet at a time causing larger messages to be transmitted piece by piece.,

interleaved with packets containing other messages. This approach is of higher

fidefity to the way that network transmission actually works.

Message Size

(bytes)

64

128

256

512

1024

2048

4096

8192

16384

32468

Client Read

(n ec)
Tokens Consumed

1672 1

1690 1

1767 1

1937 1 "

2383 1

3105 2

4485 4

6378 8

16068 16

22927 32

Client Write

Tokens Produced

Server Read

Tokens Consumed

Server Write

(msec)
Tokens Produced

Net Delay

(msec)

1672 1 1672 1 1672 1 58

1690 1 1690 1 1690 1 109

1767 1 1767 1 1767 1 211

1937 1 1937 1 1937 1 416

2383 1 2383 1 2383 1 826

3105 2 3105 2 3105 2 826

4485 4 4485 4 4485 4 826

6378 8 6378 8 6378 8 826

16068 16 16068 16 16068 16 826

22927 32 22927 32 22927 32 826

Table 5. Component Delays for Model 2 Version 2

Prototype Testbed

The prototype testbed consisted of a VAXstation II/GPX with Ethernet interface

and twenty-two rtVAX 1000 systems, also with Ethernet interfaces. As in the ADAS

models, the software client and servers each ran on a separate rtVAX 1000. The

testbed used the VAXELN real-time operating environment. Figure 23 illustrates
the hardware testbed.

The software design for prototype application was similar to the ADAS graph

models in concept. Task PEs, or servers, received input messages and performed a

synthetic computational task with executive times set as in the ADAS models.

Total time for each task was accumulated with high precision by the server process,

and finally an output message was transmitted.

A LoopDriver PE, or client, caused Task PEs (servers) to repeat their operations for

many iterations. The start-to-finish time for Task PEs was measured based on
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Figure 23. Hardware Configuration

recording the start-time before the first message was transmitted to each PE, and

recording an end-ti,ne after receipt of last return message. The difference between

the start-to-finish time for each task and the total synthetic compute tiine was

considered to be "everything else," including I/O driver time, actual Ethernet

transmit time, OS kernel time, and idle times.

A LANalyzer was used to monitor the Ethernet network, measuring the total

number of packets transmitted, tile number of bytes sent, and the average

utilization of the network. Capture and time-stamping of the packet data allowed

packet transmit times to be measured with high precision. As in the ADAS models,

message size was fixed for each simulation run. Figure 24 illustrates the software

paradigm for the testbed application. In this experiment, only one LoopDriver and

six Tasks were used, but expansion is possible with this testbed.

Experiment Results

This experiment was intended to demonstrate that increasing refinement and detail

in a model results in higher fidelity models as shown by the performance measures.

The results are supportive of this assertion. While ten user message sizes from

64 bytes to 32 kilobytes were used in the experiment, three representative sa,nples
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of tile results are presented below, representing a small user message size (64 bytes),

medium user message size (2 kilobytes), and large user message size (16 kilobytes).

Tile dependent variables studied by this experiment were average throughput, server

utilization, relative error of server utilization, network utilization, and tile relative
error of the network utilization.

Throughput was taken to be the total number of accesses to the network nodes

during a simulation run, scaled to kilobytes per second.

Server and network utilizations were calculated to be the percentage of simulation
time that the hardware resources for each were active. Relative error for each was

calculated to be tile difference between the ADAS utilization values and the

prototype testbed values.

Since sets of simulation runs were made for each user message size, each of the

dependent values was plotted against tile mean server time independent variable.

In the plot figures that follow, curve A represents Model One_ curve B represents the

first version of Model Two, curve C represents tile second version of Model Two,

and curve D represents the actual implementation, where

Model One was the simplest, lumping the application and operating system

together

the first version of Model Two refined Model One by separating the I/O

functions from the application

the second version of Model Two further refined the modeling to consider tile

effects of Ethernet packetizing of application data

Throughput Results

Figures 25 through 30 show the throughput results for the three data message sizes.

In all cases the basic shapes of the curves show that as nmdeling fidelity increases,

more accurate simulation results are obtained. Curve C is closer to the actual

implementation than the other models. Over the range of the mean server time the

curves are quite different while the network transnfission time don'finates the server

time. As the server time increases, it begins to dominate the transmission time and

the curves all converge, h_ the case of the 64-byte message size the model

overestimates the throughput while mean server times are small, and it

underestimates throughput as the server times grow. Relative error is fairly high

with the smaller server times. This suggests that the model needs to be refined

further to improve its fidelity. The most likely area for this refinement to be carried
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out is in the network services related to developing data packets for transmission.

This is likely to be true for all of the results that follow.
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Server Utilization Results

Figures 31 through 36 show tlle server utilization results for tile three data message

sizes. As with tile throughput results, the two versions of Model Two more closely

approximate the results from the actual implementation ill terms of the shape of the

curves. However, when tile relative error curves are examined, even the more refilled

models show a high degree of relative error. Again, tile increasing detail of tile

models show increasing fidelity, but additional iterations to refine tile model further

might be desirable since the models consistently overestimate the server utilization.

Network Utilization Results

Figures 37 through 42 show the network utilization results for the three data

message sizes. These results are consistent with the previous sets. For small mean

server times, the models overestimate the network utilization. They then

underestimate it for larger server times. These results also show that the most

abstract model is the least accurate. Relative error remains higher than might be

desirable, suggesting that further refinement be carried out on the model.

Experiment Conclusions

This experiment indicates that the hierarchical refinement approach is a useful way

to carry out a modeling effort. It suggests that any modeling effort should strive to

achieve the simplest model that will give acceptable results. Clearly there will be

trade-offs in cost and effort for a level considered acceptable by the modelers in any

specific case.

It is also clear that any model must be validated for it to be useful. Validation

implies that the model must be compared against reality to establish a range of

valid results. This helps to identify problems in the model or in the measurements

that were used with the model. Accurate timing information is essential to a good

simulation model and this often requires specialized equipment. A model is only as

good as the information it uses to generate results.

Modeling efforts are most useful when the simulation results can be reused. In other

words, the effort should seek to develop a reusable model that can become a library

element after validation. This lowers the cost of any modeling work over time.

Experience and judgment are important in the modeling and analysis process. Any

modeling tool is only as good as the information it has available to it, and that

information is a product of the professionals involved.
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